# 核素<sup>68</sup>Ge的加速器制备工艺研究进展

赵紫宇<sup>1,2,3</sup>, 马承伟<sup>1,2,3</sup>, 温 凯<sup>1,2,3</sup>, 段 菲<sup>1,2,3</sup>, 褚浩淼<sup>1,2,3</sup>, 李 光<sup>1,2,3</sup> (1. 原子高科股份有限公司, 北京 102413; 2. 国家原子能机构核技术(放射性药物工程转化)研发中心, 北京 102413; 3. 中国核工业集团有限公司 放射性药物工程技术研究中心, 北京 102413)

摘要:目前,<sup>68</sup>Ga标记药物的 PET 显像应用呈现显著增长,这源于<sup>68</sup>Ge-<sup>68</sup>Ga发生器的普及、靶向药物的开 发、标记程序的简单化以及<sup>68</sup>Ga标记药物的上市许可获批等有利因素。<sup>68</sup>Ga主要通过<sup>68</sup>Ge-<sup>68</sup>Ga发生器 制备,母体核素<sup>68</sup>Ge的可得性和活度成为发生器制备的决定性因素。<sup>68</sup>Ge是加速器生产的人工放射性 核素,其加速器制备技术对于推动 PET 显像药物的发展和应用具有重要意义。<sup>68</sup>Ge常用于设备的均一 化校正和衰减校正,以确保 PET 图像的准确性和可靠性,<sup>68</sup>Ge校正源是 PET 和 PET/CT 设备质量控制中 的关键部件。<sup>68</sup>Ge核素可通过回旋加速器照射金属镓靶,经核反应<sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge或<sup>69</sup>Ga(p,2n)<sup>68</sup>Ge制备。 本文对核素<sup>68</sup>Ge的性质、加速器制备现状进行总结,详细介绍加速器制备<sup>68</sup>Ge核素的关键技术和研究 进展,以期为<sup>68</sup>Ge的制备研究提供借鉴与帮助。

关键词:<sup>68</sup>Ge;制备工艺;加速器;<sup>68</sup>Ge<sup>,68</sup>Ga 发生器 **中图分类号:**TL92+3;TL99 **文献标志码:**A

doi: 10.7538/tws.2024.youxian.073

文章编号:1000-7512(2024)06-0529-11

# The Current Development Status in Accelerator Preparation of Radionuclide <sup>68</sup>Ge

ZHAO Ziyu<sup>1,2,3</sup>, MA Chengwei<sup>1,2,3</sup>, WEN Kai<sup>1,2,3</sup>, DUAN Fei<sup>1,2,3</sup>, CHU Haomiao<sup>1,2,3</sup>, LI Guang<sup>1,2,3</sup> (1. *HTA Co., Ltd., Beijing* 102413, *China*;

> 2. CAEA Center of Excellence on Nuclear Technology Applications for Engineering and Industrialization of Radiopharmaceuticals, Beijing 102413, China;

3. CNNC Engineering Research Center of Radiopharmaceuticals, Beijing 102413, China)

**Abstract:** In recent years, the PET imaging with <sup>68</sup>Ga-labeled radiopharmaceuticals have grown significantly, which is driven by the popularity of <sup>68</sup>Ge-<sup>68</sup>Ga generator, the development of targeted tracers, simple labeling procedures, and approval of <sup>68</sup>Ga-labeled radiopharmaceuticals. Currently, <sup>68</sup>Ga is mainly produced by <sup>68</sup>Ge-<sup>68</sup>Ga generator. Therefore, the source and activity of parent nuclide <sup>68</sup>Ge become the key factor in the <sup>68</sup>Ge-<sup>68</sup>Ga generator preparation. <sup>68</sup>Ge is an artificial radionuclide produced by accelerator, its accelerator preparation is of great significance for promoting the development and application of PET imaging drugs. <sup>68</sup>Ge can be often used for the homogenization correction and attenuation correction of the equipment to ensure the accuracy and reliability of PET

收稿日期: 2024-06-28;修回日期: 2024-08-12

基金项目:国防科技工业局核能开发项目(2022-2023)

通信作者:温 凯

images, and <sup>68</sup>Ge correction source is a key component in the quality control of PET and PET/CT. <sup>68</sup>Ge can be prepared by irradiating metal gallium target via proton cyclotron through <sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge or <sup>69</sup>Ga(p,2n)<sup>68</sup>Ge nuclear reaction. This paper summarizes the properties and preparation of <sup>68</sup>Ge and introduces the key technologies and research progress of the accelerator production of <sup>68</sup>Ge in detail, hoping to provide reference and experience for the preparation of <sup>68</sup>Ge and help realize the independent.

Key words: <sup>68</sup>Ge; preparation process; accelerator; <sup>68</sup>Ge-<sup>68</sup>Ga generator

核素<sup>68</sup>Ge具有较长的半衰期(T1/2=270.93 d), 可通过电子俘获衰变至<sup>68</sup>Ga,是<sup>68</sup>Ga的母体核 素。<sup>68</sup>Ga作为一种正电子发射体(衰变方式为  $E_{\beta+}=1.9$  MeV,  $E_{\gamma}=0.511$  MeV,  $I_{\beta+}=89\%$ , EC=11%), 是正电子发射断层扫描(PET)显像设备中常 规使用的诊断性放射性核素[1]。由于较短的半 衰期 (T12=67.7 min)和正电子发射的高分支比 (I<sub>B+</sub>=89%),已被广泛应用于各种临床前和临床 影像研究<sup>[2]</sup>。目前,三种<sup>68</sup>Ga标记的放射性示 踪剂已经被美国食品药品监督管理局(FDA) 批准上市,分别为用于诊断前列腺癌(PC)的 <sup>68</sup>Ga-PSMA-11、用于诊断神经内分泌肿瘤(NETs) 的<sup>68</sup>Ga-DOTATATE 和<sup>68</sup>Ga-DOTATOC。其中, <sup>68</sup>Ga-DOTATATE 对于 NETs 诊断的灵敏度和特 异性可达 90% 以上, 成为 NETs 临床影像诊断、 定位和分期的"金标准"<sup>[3]</sup>。此外,<sup>68</sup>Ge校正源 是 PET/CT 设备正常运行中必不可少的配置之 一,通过系统均一性校正和衰减校正等应用,可 以显著提高 PET 图像的准确性和可靠性,为临 床诊断提供更加精准的信息支持<sup>[4]</sup>。核素<sup>68</sup>Ga 主要通过<sup>68</sup>Ge-<sup>68</sup>Ga发生器制备,发生器的有效 期接近一年。<sup>68</sup>Ge-<sup>68</sup>Ga发生器的商品化以及 <sup>68</sup>Ga<sup>3+</sup>简便的分离方法使<sup>68</sup>Ga<sup>3+</sup>能够在 PET 诊断 中广泛应用<sup>[5]</sup>。母体核素<sup>68</sup>Ge主要通过加速器 诱发核反应<sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge 或核反应<sup>69</sup>Ga(p, 2n)<sup>68</sup>Ge 获得<sup>[6]</sup>。<sup>68</sup>Ge的加速器制备工艺分为制靶工艺、 辐照和分离纯化工艺三部分,本文将对这三部 分进行总结, 拟为今后68Ge 的生产和制备提供 参考。

#### 1 <sup>68</sup>Ge 的性质

锗,原子序数 32,属于 VIB 族。金属锗在 400 ℃的空气中也能稳定,超过 600 ℃ 开始缓 慢氧化。锗溶于水,但水中热力学不稳定;锗易 溶于稀硝酸和稀碱金属氢氧化物,主要形成 +4 价氧化态。另外因其金属性, 锗易被王水、 熔融碱金属和过氧化氢等氧化<sup>[7]</sup>。

核素<sup>68</sup>Ge, 主要通过 EC 衰变为<sup>68</sup>Ga, 衰变分 支比为 100%, 衰变时发射 9.209 keV 和 9.181 keV 的 X 射线, 衰变链示于图 1。由于<sup>68</sup>Ge 的半衰 期较长, 而<sup>68</sup>Ga 的半衰期较短, 使用<sup>68</sup>Ge-<sup>68</sup>Ga 发 生器便于<sup>68</sup>Ga 放射性药物的制备和应用。可以 作为<sup>68</sup>Ge-<sup>68</sup>Ga 发生器的原料, 生产放射性示踪 核素<sup>68</sup>Ga<sup>[8]</sup>。



## 2 <sup>68</sup>Ge 的制备

核素<sup>68</sup>Ge主要通过加速器制备,可行的 核反应路径有<sup>69</sup>Ga(p,2n)<sup>68</sup>Ge,<sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge, <sup>nat</sup>Ge(p,xn)<sup>68</sup>Ge,<sup>69</sup>Ga(d,3n)<sup>68</sup>Ge和<sup>66</sup>Zn(α,2n)<sup>68</sup>Ge, 依据加速器粒子和靶材的不同而选择相应 的核反应。根据Horiguchi等对上述核反应激 发函数和厚靶产额的研究,以<sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge 和<sup>nat</sup>Ge(p,pxn)<sup>68</sup>Ge制备<sup>68</sup>Ge更加适宜<sup>[6]</sup>。但是 通过<sup>nat</sup>Ge(p,pxn)<sup>68</sup>Ge核反应,<sup>68</sup>Ge产品中有大量 的载体,比活度低,不利于<sup>68</sup>Ge-<sup>68</sup>Ga发生器的装 配。因此,国际原子能机构(IAEA)推荐使用 <sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge核反应制备<sup>68</sup>Ge<sup>[9]</sup>,实际生产中 也多用此核反应。下面将从制靶、辐照和分离 纯化介绍加速器核素<sup>68</sup>Ge的制备工艺。

#### 2.1 制靶工艺

在全球范围内,众多国家和实验室基于 <sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge核反应生产<sup>68</sup>Ge核素<sup>[10]</sup>。其中, 美国洛斯阿拉莫斯国家实验室(LANL)、布鲁 克海文国家实验室(BNL)、俄罗斯奥布宁斯 克回旋加速器同位素生产公司(Cyclotron Co., Ltd, Obninsk)、南非国家加速器中心(LABS)可 以进行<sup>68</sup>Ge的常规生产。具体来讲,俄罗斯和 法国以Ga、Ni合金靶为靶材,<sup>68</sup>Ge产额达到 9.2  $\mu$ Ci/ $\mu$ A·h;南非以铝盖封装Ga<sub>2</sub>O为靶,产额 为15.1  $\mu$ Ci/ $\mu$ A·h。而美国LANL、BNL、南非 LABS、哈萨克斯坦等则以铌封装纯镓制备密封 靶,但是辐照条件有所不同:南非国家加速器中 心(LABS)用36 MeV能量,37000 $\mu$ A·h束流积 分的质子束进行辐照;美国LANL在60 MeV 125 $\mu$ A辐照492 h;哈萨克斯坦辐照条件为 30 MeV 40 $\mu$ A,总束流积分14000 $\mu$ A·h。总体来

看,密封靶的产额处于12.1~16.2 μCi/(μA·h) 水平, 哈萨克斯坦的产额为23.9 μCi/(μA·h), LANL的 产额则高达32 μCi/(μA·h)。虽然各个实验室采 用的制靶方式不同,但<sup>68</sup>Ge的批生产能力达18.5~ 74 GBq(0.5~2 Ci),核素质量优良,核纯大于 99.9%,镓等元素杂质含量较低。全球范围内 <sup>68</sup>Ge的生产情况列于表1。

核素<sup>68</sup>Ge的加速器制备制靶方法主要有合 金法、氧化物法和密封靶法,三种方法各有特 点,适用于不同的场景。

|                      | 1                            |                       |         |              |                |       |               |  |
|----------------------|------------------------------|-----------------------|---------|--------------|----------------|-------|---------------|--|
| 加速器動性                | <u>如</u>                     | 辐照参数                  |         |              |                |       | 产品产量          |  |
| 川北省市地址。              | 40.42                        | $E_{\rm p}/{\rm MeV}$ | T/h     | <i>Ι</i> /μΑ | $P/mA \cdot h$ | A/GBq | 产额/(µCi/µA·h) |  |
| 俄罗斯奥布宁斯克回旋加速器同位素生产公司 | Ga <sub>4</sub> Ni           | 23                    | 120-240 | N.A.         | N.A.           | N.A.  | N.A.          |  |
| 南非国家加速器中心LABS        | 5.2 g Nb封装4.0 g Ga           | 36                    | N.A.    | N.A.         | 37             | 16.6  | 12.1          |  |
|                      | Al 封装4.5 g Ga <sub>2</sub> O | 2~34                  | N.A.    | 65           | N.A.           | N.A.  | 15.1          |  |
| 美国布鲁克海文国家实验室         | Nb封装81 g Ga                  | 30                    | 640     | 85           | 45-55          | 33-51 | 16.2          |  |
| 美国洛斯阿拉莫斯国家实验室        | 5 g Nb封装4 g Ga               | $\sim \! 60$          | 492     | 125          | N.A.           | 70    | 32            |  |
| 哈萨克斯坦核物理研究所          | Nb封装5 g Ga                   | 30                    | N.A.    | 40           | 14             | 12.4  | 23.9          |  |
| 莫斯科核研究所              | Ga                           | 50~15                 | 250     | N.A.         | N.A.           | 18.5  | N.A.          |  |
| 法国奥赛大学               | 钛托上镀3 mm Ga <sub>4</sub> Ni  | 20(19.5)              | 60      | 45           | N.A.           | N.A.  | 9.2           |  |

注: N.A.表示文章未提及。

2.1.1 合金法 合金法为最早使用的<sup>68</sup>Ge制备 方法<sup>[11-12]</sup>。国内外报道的镓合金靶件,一般采 用 Ga:Ni比例为4:1或2:1的合金。镓靶件 的制备有电沉积和熔融两种方法<sup>[13-14]</sup>,电沉积 法获得的镀层结构致密,与靶片结合力较强,缺 点是镓靶材含量较低。熔融法的原理是利用液 压机将真空熔融的镓镍合金压制到靶片上,制 备出镓含量较高的靶材,缺点是需要真空熔融, 靶材和靶片结合力较差<sup>[15]</sup>。

原子高科股份有限公司采用电沉积法制备 镓 靶件以生产<sup>68</sup>Ge核素,用于制备<sup>68</sup>Ge校正 源。制靶采用的方法为<sup>[14,16]</sup>:以铜靶托为基底, 温度 80 ℃,电流密度 20 mA/cm<sup>2</sup>,镀液组分包含 0.1 mol/L 盐酸和 4:1的 Ga/Ni 混合溶液,在搅 拌条件下制备出镓含量 75%~80%的镓靶件 (即 Ga<sub>3</sub>Ni-Ga<sub>4</sub>Ni); 靶件表面镀镍以保护镓镍合 金。经加速器辐照,镓靶件表面无明显变化,热 实验产额达到 11~17 mCi/(mA·h),产量为 30~ 120 mCi/批。

法国南特大学在 ARRONAX 高能粒子回旋

加速器(70 MeV)使用串列靶的方式同时制备 <sup>82</sup>Sr 和<sup>68</sup>Ge 核素<sup>[17]</sup>,其中<sup>68</sup>Ge 采用合金法制备,镓 靶件采用电镀法,Ga<sup>3+</sup>和 Ni<sup>2+</sup>为电镀液主要成分, 选用导热性能和抗腐蚀性好的金靶托作为阴 极,铂棒作为阳极,以恒电位仪 Metrohm 的 PGP 201 型辐射计电镀镓靶件,制得的镓镍合金的 成分有 Ga<sub>4</sub>Ni,Ga<sub>3</sub>Ni<sub>2</sub> 和 Ga<sub>4</sub>Ni<sub>3</sub> 三种。使用强 度 100  $\mu$ A,能量 21 MeV 的质子束辐照靶件为厚 度 300  $\mu$ m 的 Ga<sub>4</sub>Ni<sub>3</sub> 合金靶 100 h,制得的<sup>68</sup>Ge 产 量为 100 mCi,产额为 10  $\mu$ Ci/( $\mu$ A·h)。

美国威斯康星大学<sup>[18]</sup>则采用密封式的 Ga<sub>3</sub>Ni 合金制备<sup>68</sup>Ge,以金为靶托,电镀不同比 例的 Ga/Ni 合金,并固体靶基础上增加了正面 铌环和背面铌环,以后冷却的方式制备<sup>68</sup>Ge。 电沉积 6 d后,Ga/Ni 合金镀层厚度为 375 μm, 质量密度为 245.3 mg/cm<sup>2</sup>,镀层外观和扫描电镜 测试表明 Ga/Ni 合金镀层的均匀性和光滑度均 较好。电镀后的镓镍合金经过在 400 ℃ 热冲击 测试,光学显微镜下镓靶件无熔化现象,且表面 完整,无明显变化。辐照实验表明,该镓靶件可 承受 20 μA 以上的束流, 随后采用 DGA 树脂分 离, <sup>65</sup>Zn 杂质小于 0.1%, <sup>68</sup>Ge 回收率大于 75%。

合金法制靶技术成熟,工艺简单,但是靶材 引入其他杂质(如Ni),而开放式的合金靶件会 在打靶过程中较易形成<sup>68</sup>Ge放射性气溶胶,一 方面会导致靶室、加速器大厅污染,影响<sup>68</sup>Ge 核素的稳定生产,另一方面也存在较大的安全 隐患。因此,需要对其进行优化,以获得安全、 稳定、可批量化生产<sup>68</sup>Ge 的制靶工艺。

2.1.2 氧化物法 国外采用了镓的不同形式氧 化物来制靶如  $Ga_2O$ 和  $Ga_2O_3$ 来制靶, Ga含量 更高,同时理论产量更高。1981年,英国制备了  $Ga_2O_3$ 靶<sup>[1]</sup>,但产额较低。2002年,南非 Naidoo 等<sup>[19]</sup>使用  $Ga_2O$  制备<sup>68</sup>Ge,  $Ga_2O$  制备方法为  $Ga_2O_3$ (1.874g)和 Ga(2.789g)在  $60 \ {}^{\circ}$ 下加热,直到金 属镓熔化;将此混合物在 700  ${}^{\circ}$ 下加热并混 合均匀。采用冲模(高碳高铬刀具组加工)在 523 MPa 的真空条件下,单轴挤压上述混合物, 制备出约 4.5 g  $Ga_2O$ 。将  $Ga_2O$ (直径 20 mm,厚 1 mm)封装在铝罐中,以冷焊工艺密封得到  $Ga_2O$ 靶。质子束轰击  $Ga_2O$ 靶(能量窗口: 2~ 34 MeV,电流 65  $\mu$ A),持续 10~15 min。以浓硫 酸溶靶,以 AG1-X8 树脂分离纯化,硝酸解吸, 产额达到 15.1  $\mu$ Ci/ $\mu$ A·h<sup>-1</sup>。

2006年,南非 Aardaneh 等报道利用 Ga<sub>2</sub>O 制 备 <sup>68</sup>Ge <sup>[20-21]</sup>。 镓 靶件为 Ga<sub>2</sub>O 圆片 靶,密度为 4.23 g/cm<sup>3</sup>, Ga<sub>2</sub>O 采用 Ga 和 Ga<sub>2</sub>O<sub>3</sub> 混合加热制 备,Ga<sub>2</sub>O 靶利用冲模装置制备。为了检查 Ga<sub>2</sub>O 靶是否存在游离金属镓,将 Ga<sub>2</sub>O 靶置于约 600 °C 的烘箱中加热 5 min。经过加热除去在 Ga<sub>2</sub>O 靶 表面以小液滴形式出现的金属镓。Ga<sub>2</sub>O 靶可 以在 34 MeV, 80  $\mu$ A 的质子束流条件辐照下长 时间保持稳定,产额达到 37  $\mu$ Ci/ $\mu$ A·h<sup>-1</sup>。

2.1.3 密封靶法 密封靶法选用的密封材料多 为金属铌。镓性质较为活泼,作为液态金属对 几乎所有的金属都有腐蚀性。而铌在400℃以 内与镓无反应,但在400℃以上会与镓形成脆 性较大、机械性能差的铌酸酯化合物。不过, 金属铌的导热系数很低,仅为54 W/mK,约为铝 的四分之一,需要关注靶材导热问题<sup>[22]</sup>。

美国布鲁克海文国家实验室(BNL)将 Ga 靶 (4.0 g Ga) 封装在 Nb 胶囊 (5.2 g Nb) 中<sup>[23]</sup>, 用约 45 MeV 质子辐照镓靶件 4 周,<sup>68</sup>Ge 的批产能为 (16.6±1.3) GBq, 产额为 14.1 μCi/(μA·h), 对应理 论厚靶产率的 85%。在质子辐照过程中, 同时 会生成长半衰期杂质<sup>65</sup>Zn(*T*<sub>1/2</sub> = 244 d)。当采用 25 MeV 的能量辐照铌镓密封靶时, <sup>68</sup>Ge/<sup>65</sup>Zn 的 产量比高达 1.1, 利用萃取分离方法可去除上述 杂质, 实现<sup>68</sup>Ge 的分离纯化。

南非国家加速器中心(LABS)同样采用密 封靶制备<sup>68</sup>Ge<sup>[24]</sup>,使用两种规格的镓靶,靶厚度 均为2.54 g/cm<sup>2</sup>,小靶的质量为8 g,直径为20 mm, 铌壁厚 0.3 mm,大靶的质量为32 g,直径为40 mm, 铌壁厚 0.5 mm。小靶托与水平束流固体靶站兼 容,通常以 90 μA的束流强度辐照。大靶托与 垂直光束固体靶站兼容,可以承受250 μA的束 流轰击,大靶托尺寸较大可提供更大的冷却表 面积。在辐照过程中,快速流动的冷却水与密 封靶材直接接触,完全包围靶体。另外,可根据 需求对靶的厚度进行微调以更好地利用靶窗。

哈萨克斯坦国家核物理实验室与美国洛 斯阿拉莫斯实验室(LANL)合作开展了<sup>68</sup>Ge生 产的研究<sup>[25]</sup>。制作的铌镓密封靶是将天然 Ga 密封到铌外壳中,结构为直径 20 mm 的圆形靶 面,采用双面水冷却,以 90~100 μA 束流强度 和 30 MeV 质子束辐照生产<sup>68</sup>Ge。质子束以螺 旋形的两个圆圈方位扫描靶表面以获得更均匀 的辐射。此时,能量释放密度约为 10 W/mm<sup>2</sup>, 释放的热能接近铌镓密封靶的极限。由于该方 法利用靶正面冷却,会导致束流能量降低至 25~ 27 MeV, <sup>68</sup>Ge 产量也会降低。

美国洛斯阿拉莫斯实验室(LANL)也报道 了密封靶生产<sup>68</sup>Ge的方法<sup>[22]</sup>。采用两片直径为 330 mm,厚度为 0.3 mm的铌盘制备铌镓密封 靶,在圆周处使用真空电子束焊接技术,如图 2 所示。靶材选用纯度为 99.99% 天然液态金属 镓,密封靶材为纯度为 99.9%的铌。液态镓通 过注镓孔注入铌胶囊中,铌胶囊靶增加了排气





孔,以排出靶内空气。最后用真空电子束焊接 密封注镓孔和排气孔,辐照7~15d。

以色列 SARAF 实验室也采用了密封靶的 形式制备<sup>68</sup>Ge<sup>[26]</sup>, 靶托采用高强度、高导热率的 金属合金, 冷却则通过液态金属撞击射流实 现。靶座由钛锆钼合金(TZM)制成, 靶窗则由 HAVAR 制成, 也使用 SS316L 膜进行了实验, 具 有 500 ℃ 以上的抗拉强度。靶体与质子束流成 45°角, 以减少热通量并增加冷却面积。其中镓 层的厚度不得小于质子的穿透范围, 保护钛锆 钼合金体以免受氢腐蚀, 同时减小表面起泡的 影响。由于 30 MeV 质子在镓中的穿透距离为 (2.5±0.1) mm, 当束流入射角为 45°时, 镓靶层厚 度设置为 1.9 mm。该方法采用液态金属冷却, 对靶要求较高,较难实现;而且 Havar 膜的强度 相对较低,会有爆膜的风险。<sup>68</sup>Ge 的三种制靶 方式均已有较多研究,特点对比列于表 2。合 金靶技术是早期的主要制靶技术,虽然靶材引 入其他杂质,却仍具有易于制备的优势;但是辐 照过程为开放式操作,可能产生<sup>68</sup>Ge 气溶胶。<sup>68</sup>Ge 的氧化物靶存在产能不足的问题,仅适用于小 规模核素制备研究;但靶材为固态,无其他元素 杂质。<sup>68</sup>Ge 密封靶是一种新型制靶方法,具有 靶材装量大、辐照过程密闭可控等优势,但是 该方法为国外技术机密,国内尚未开展研究。 此外密封靶对靶系统要求较高,既需要较好的 水冷或氦冷系统,又需要完善的制靶、装靶和 传靶系统。

表 2 三种制靶方法对比 Table 2 Comparison of three targetry methods

| 对比 | 合金法                                            | 氧化物法                        | 密封靶法                        |
|----|------------------------------------------------|-----------------------------|-----------------------------|
| 优势 | 制靶技术成熟,工艺简单。                                   | 靶材为固态,无其他元素杂质。              | 靶材装量大;辐照过程密闭可控。             |
| 劣势 | 靶材引入其他杂质;<br>辐照为开放式操作,易产生 <sup>68</sup> Ge气溶胶。 | 氧化物靶制靶复杂;<br>产能不足,适用于小规模制备。 | 液态镓腐蚀性强, 靶易失效;<br>对靶系统要求较高。 |

#### 2.2 辐照

以镓(<sup>nat</sup>Ga、<sup>69</sup>Ga和<sup>71</sup>Ga)为靶材,生产<sup>68</sup>Ge 的激发曲线示于图 3<sup>[13]</sup>。在 30~50 MeV 能量 范围内,产额一般可达到 10~30 µCi/(µA·h),而在 30 MeV 以下,产额基本在 10~20 µCi/(µA·h)<sup>[27]</sup>。

<sup>68</sup>Ge 制备过程主要使用天然镓(<sup>nat</sup>Ga)作为 靶材,主要核反应为<sup>nat</sup>Ga(p,xn)<sup>68</sup>Ge, 根据图 3 所 示的反应截面,反应在 20 MeV 时出现 275 mb 最大反应截面。在辐照过程中大部分杂质核素 的最大反应截面在 20~30 MeV 之间,与<sup>68</sup>Ge 的 最佳能量类似,因此会产生较多的杂质。可能 出现的副反应,主要包括种类列于表  $3^{[26, 28-30]}$ 。 根据表 3 可知,主要杂质核素有<sup>69</sup>Ge、<sup>67</sup>Ga、<sup>68</sup>Ga、 <sup>65</sup>Zn、<sup>66</sup>Ga、<sup>69m</sup>Zn。<sup>69</sup>Ge 通过副反应<sup>nat</sup>Ga(p,xn)<sup>69</sup>Ge 产生,在 30 MeV 时有最大反应截面 200 mb;另 一副反应<sup>nat</sup>Ga(p,pxn)<sup>67</sup>Ga 会产生<sup>67</sup>Ga,反应截面 20~30 MeV 时呈逐渐增大趋势,在 30 MeV 时 有最大值 225 mb; 副反应<sup>nat</sup>Ga(p,pxn)<sup>68</sup>Ga 在 20~ 30 MeV 时有反应截面峰值(225 mb); <sup>65</sup>Zn 则是 通过<sup>nat</sup>Ga(p,x+n)<sup>65</sup>Zn 核反应生成,在 20 MeV 附



图 3 <sup>nat</sup>Ga(p, xn)<sup>68</sup>Ge 的激发曲线 Fig.3 Excitation functions of <sup>nat</sup>Ga(p, xn)<sup>68</sup>Ge

表 3 <sup>nat</sup>Ga 的主要核反应 Table 3 The main nuclear reactions of <sup>nat</sup>Ga

| 序号 | 核素                | 半衰期      | 核反应                                                                                                                                              |
|----|-------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | <sup>68</sup> Ge  | 270.95 d | <sup>69</sup> Ga(p, 2n) <sup>69</sup> Ge <sup>71</sup> Ga(p, 4n) <sup>69</sup> Ge                                                                |
| 2  | <sup>69</sup> Ge  | 39.05 h  | <sup>69</sup> Ga(p, n) <sup>69</sup> Ge <sup>71</sup> Ga(p, 3n) <sup>69</sup> Ge                                                                 |
| 3  | <sup>66</sup> Ga  | 9.49 h   | <sup>69</sup> Ga(p, p3n) <sup>66</sup> Ga <sup>71</sup> Ga(p, p5n) <sup>66</sup> Ga                                                              |
| 4  | <sup>67</sup> Ga  | 3.26 d   | <sup>69</sup> Ga(p, p2n) <sup>67</sup> Ga <sup>71</sup> Ga(p, p4n) <sup>67</sup> Ga                                                              |
| 5  | <sup>68</sup> Ga  | 1.129 h  | <sup>69</sup> Ga(p, pn) <sup>68</sup> Ga <sup>71</sup> Ga(p, p3n) <sup>68</sup> Ga                                                               |
| 6  | <sup>65</sup> Zn  | 243.93 d | ${}^{69}\text{Ga}(p, 2p3n)  {}^{65}\text{Zn}  {}^{69}\text{Ga}(p, \alpha n)  {}^{65}\text{Zn}  {}^{71}\text{Ga}(p, \alpha 3n)  {}^{65}\text{Zn}$ |
| 7  | <sup>69m</sup> Zn | 13.76 h  | <sup>71</sup> Ga(p, 2pn) <sup>69m</sup> Zn <sup>69</sup> Ga(d, 2p) <sup>69m</sup> Zn                                                             |

近有 50 mb 的反应截面峰值; 而<sup>69m</sup>Zn 和<sup>66</sup>Ga 对 应的核反应 <sup>nat</sup>Ga(p,2pxn)<sup>69m</sup>Zn、<sup>nat</sup>Ga(p,p+xn)<sup>66</sup>Ga 在 20~30 MeV 时反应截面较小, 仅为几 mb。 在产生的杂质中, <sup>66</sup>Ga、<sup>67</sup>Ga、<sup>68</sup>Ga、<sup>69</sup>Ge、<sup>69m</sup>Zn 半 衰期较短, 辐照后冷却月余基本衰变完全<sup>[31]</sup>; 而<sup>65</sup>Zn 的半衰期长达 243.93 d, 激发曲线又与 <sup>68</sup>Ge 类似, 是<sup>68</sup>Ge 制备过程中最主要的放射性 杂质。<sup>65</sup>Zn 会对分离过程产生较大影响, 但是 可以通过选取合适的分离纯化工艺将其去除。

辐照是发生核反应的过程,辐照方案关系 辐照安全,同时直接影响产品质量和产品产 额。辐照方案(包括靶件冷却方案)因制靶方式 不同而异,同时也取决于加速器自身条件,包括 最大质子能量、最大束流和辅助装置(红外测 温等)。关于三种靶件的辐照,已有多种研究。

2.2.1 合金靶辐照 法国南特大学在 ARRONAX 加速器(最大质子能量 70 MeV,两条 375 μA 束流线)采用串列靶同时生产<sup>82</sup>Sr 和<sup>68</sup>Ge。高能槽 RbCl 靶的质子能量 40~70 MeV,经 RbCl 靶的 束流衰减后,到达低能槽镓靶的能量约为 15~30 MeV。由<sup>68</sup>Ge 的激发曲线可知,20 MeV 时有 最大反应截面为 550 mb<sup>[17]</sup>,因此串列靶中的低 能槽成为生产<sup>68</sup>Ge 的理想选择。

台湾原子能委员会核能研究所 Ai-Ren Lo 等<sup>[31]</sup>在 INER TR 30/15 紧凑型回旋加速器(最 大质子能量 30 MeV)上进行辐照,选用 19 MeV 能量, 束流为 50~100 μA, 轰击一定时间。辐照 后, 将靶件冷却一个月, 以降低伴随同位素的活 性。结果表明, 三次辐照实验的平均产量为 7.06 μCi/(μA·h)/g (以<sup>69</sup>Ga 计), 与 LOCH 报告的 9.2 μCi/(μA·h)处于同一数量级。

美国威斯康星大学 Nickles 等<sup>[18]</sup>选用 GE PET trace 对电镓镍合金靶件进行辐照,以金

靶托为基底,金靶托后面直接水冷。 辐照条件 为 16 MeV 40 μA, 束流积分 60 μA·h, <sup>68</sup>Ge 产额为 43 kBq/(μA·h)。

**2.2.2** 氧化物靶辐照 与合金靶类似,在南非 iThemba LABS 的 66 MeV 加速器生产<sup>68</sup>Ge 采用 串列靶同时生产<sup>82</sup>Sr 和<sup>68</sup>Ge<sup>[20]</sup>。镓靶件选择镓 的氧化物,质子束辐照条件为能量 2~34 MeV, 束流 65  $\mu$ A, 10~15 min。当以 Ga<sub>2</sub>O 为靶材时, 在 34 MeV 高能质子束和 80  $\mu$ A 束流的长时间 照射下, <sup>68</sup>Ge 产额为 37  $\mu$ Ci/( $\mu$ A·h)<sup>[21]</sup>。

2.2.3 密封靶辐照 美国 LANL 实验室使用 100 MeV 230 μA 的 IPF<sup>[22, 32]</sup>,采用串联密封靶同 时生产<sup>82</sup>Sr、<sup>68</sup>Ge。靶材安装在支架上,并固定 在靶组件中,使靶材表面被 5 mm 厚的冷却通 道隔开,流过靶材表面的冷却水速度范围为 2~5 m/s,实现密封靶双面水冷效果。

在哈萨克斯坦 INP 回旋加速器 (最大质子 能量 50 MeV, 東流 500 μA)上引入圆形电子束 扫描以获得均匀的圆形靶辐照,使用 30 MeV, 30~80 μA 東流辐照密封靶<sup>[25]</sup>。在电子束实验 台上用红外温度计确定靶的局部温度,对传热 进行分析和实验评估;实际中采用在密封靶背 面水冷,辐照 7~15 d,密封靶结构完整,未出现 失效情况,其中冷却水压力 5 bar,耗水量约4 L/min, 冷却水流厚度 0.5 mm, 水温 14 ℃。

与合金靶类似,在 iThemba LABS 66 MeV 质 子加速器仍然采用串列靶辐照密封靶,高能槽 通常生产<sup>22</sup>Na 或<sup>82</sup>Sr,而低能槽通常生产<sup>68</sup>Ge<sup>[24]</sup>。 低能槽能量通常在 32~36 MeV 之间,然而由于 有"死层"(例如冷却水层、封装材料壁等),实际 低能槽窗口的上限能量在 21~25.5 MeV 之间。 在辐照过程中,快速流动的冷却水与密封材料 直接接触,并完全包围密封靶。

#### 2.3 分离纯化工艺

<sup>68</sup>Ge的分离纯化有萃取、蒸馏和离子交换 三种,下面将详细介绍这三种方法。

2.3.1 萃取法 萃取法是早前分离纯化<sup>68</sup>Ge的 常用方法,其分离原理是利用溶质在两个互不 相溶的液相中溶解度的差异而将液体混合物分 离开来。萃取<sup>68</sup>Ge主要使用甲苯或 CCl<sub>4</sub> 为萃 取剂,从水溶液中萃取<sup>68</sup>Ge。

美国布鲁克海文国家实验室(BNL)主要采 用萃取法从辐照后的天然镓靶件中分离<sup>68</sup>Ge<sup>[23]</sup>, 用4mol/L盐酸和30%过氧化氢溶解靶件后,从 靶件中将<sup>68</sup>Ge以GeCl<sub>4</sub>的形式提取出来。由于 Ga溶解不完全,要进行5次萃取才能实现定量 回收。合并上述萃取液,使用甲苯或四氯化碳/ 盐酸进行液/液溶剂萃取<sup>68</sup>Ge,同时从水相中提 取<sup>65</sup>Zn和毫克级镓;最后使用0.1mol/L盐酸从 甲苯或四氯化碳中萃取<sup>68</sup>Ge。萃取法的回收率 可达85%,核纯大于99%,<sup>68</sup>Ge的平均放射性浓 度为92.96mCi/mL。这种方法可以生产用于PET 校准源的<sup>68</sup>Ge。南非国家加速器中心(LABS)也 报道了使用四氯化碳萃取法分离纯化<sup>68</sup>Ge的步 骤<sup>[4]</sup>,以浓硫酸和30%的过氧化氢混合液溶解 辐照后靶件至少4h,以四氯化碳/盐酸体系中萃 取纯化<sup>68</sup>Ge,再以0.05mol/L盐酸反萃取获得<sup>68</sup>Ge。

BNL还报道了甲苯萃取的分离方法<sup>[23]</sup>,在 调节水相的酸度前,加入冷却的甲苯可降低挥 发性 GeCl<sub>4</sub> 损失。其原理为甲苯的密度小于水, 甲苯可形成覆盖水相的层,从而防止<sup>68</sup>Ge 因挥 发性而导致损失。利用浓硝酸调节 pH 后,使用 甲苯萃取水相(*V*:*V*=1:5),搅拌混合物使各相 沉降,可从萃取容器的底部除去含有<sup>65</sup>Zn 和镓 的水相。再用 10 mol/L 盐酸洗涤甲苯相,在弃 去的水相或洗涤液中检测到的<sup>68</sup>Ge 漏穿为 0.1%。 最后用 0.1 mol/L 盐酸将<sup>68</sup>Ge 从有机相中反萃 取两次,<sup>68</sup>Ge 的浓度范围为 0.37~2.22 GBq/mL (10~60 mCi/mL)。<sup>68</sup>Ge 的回收率随反萃取时 所用水相的体积而变化:当水相为有机相的 30% 时,回收率最高为 99%; 当水相为有机相体 积的 5% 时,回收率最低为 5%。

美国洛斯阿拉莫斯实验室(LANL)也采用 四氯化碳萃取法分离纯化<sup>68</sup>Ge<sup>[33]</sup>。使用 30 mol/L 氢氟酸和浓硝酸作为溶靶液以使靶件缓慢溶 解,加入 18 mol/L浓硫酸并蒸发溶液以除去挥发 性酸。随后用四氯化碳/盐酸萃取<sup>68</sup>Ge 至有机 相中,再用水反萃取<sup>68</sup>Ge。最后上柱分离阶段 用氧化铝柱除去<sup>88</sup>Zr和铌:<sup>88</sup>Zr先被吸附在氧化 铝柱上,再用盐酸/氢氟酸混酸洗脱 90% 的<sup>88</sup>Zr; 铌以氢氧化物形式部分沉淀,需要过滤溶液;使 用AG1-X8 阴离子交换树脂柱以 5 mol/L 盐酸淋 洗<sup>88</sup>Zr。

萃取法虽然可以有效地去除辐照产生的 锌、镓等杂质,获得较高纯度的<sup>68</sup>Ge,但是采用 四氯化碳或甲苯等有毒有机溶剂大规模生产出 来的<sup>68</sup>Ge却不宜制造药物,原因是 FDA 在其 《工业指南》(FDA, 2003)中将四氯化碳列为 Q3C 1 类溶剂(已知可致癌且对人和环境有害的溶 剂),将甲苯列为 Q3C 2 类溶剂(有动物致癌性 的溶剂,按每日允许接触量计算的规定限度为 899 ppm)。要制备出符合 FDA 标准的<sup>68</sup>Ge-<sup>68</sup>Ga 发生器,需要使用无毒试剂且高分离产率的放 射化学分离方法来生产<sup>68</sup>Ge 核素。

2.3.2 柱分离法 柱分离法是一种广泛应用于 化学和生物学领域的分离技术,其基本原理是 利用混合物中各组分物理化学性质的差异,如 吸附力、分子形状及大小、分子亲和力、分配 系数等,使各组分在固定相和流动相之间进行 不同的分配和移动速度,从而实现分离。<sup>68</sup>Ge 分离纯化常用的分离柱列于表 4, AG 1-X8 的装 载量和柱体积适中,对Zn离子有较好的分离作 用; AG 50W-X8 和 Chelex 100 最终均能只保留 Co离子,区别在于Chelex 100能同时淋洗掉Ga、 Ge, 而 AG 50W-X8 能单独淋洗 Ge; Sephadex G-25 凝胶柱的装载量和柱体积均适中,可以实现 Ge、Ga分离。以镓为靶件,溶靶后存在Ga元 素杂质,使用 Sephadex G-25 凝胶柱单柱即可有 效地分离纯化<sup>68</sup>Ge。单独的 AG 1-X8 和 Chelex 100 无法分离 Ge、Ga, 需要串联多柱分离纯化 Ge; 但是 AG 1-X8 和 Chelex 100 分别对 Zn、Co 有较

|    | Table 4         Comparison of different ion exchange resin columns |                  |         |                       |       |        |       |          |
|----|--------------------------------------------------------------------|------------------|---------|-----------------------|-------|--------|-------|----------|
| 序号 | 柱名称                                                                | 成分               | 离子形式    | 作用                    | 装载量/g | 柱体积/mL | 保留    | 淋洗       |
| 1  | AG 1-X8                                                            | 苯乙烯二乙烯苯共聚物-季铵盐   | Cl      | 低分子量的无机阴离子            | 1.5   | 3      | Zn    | Ga、Ge、Co |
| 2  | AG 50W-X8                                                          | 苯乙烯二乙烯苯共聚物-磺酸基   | $H^+$   | 低分子量的阳离子              | 0.5   | 1      | Co    | Ge       |
| 3  | Chelex 100                                                         | 苯乙烯、二乙烯苯共聚体      | 亚氨基二乙酸盐 | 螯合高价态金属离子             | 3.5   | 5      | Co    | Ga, Ge   |
| 4  | Sephadex G-25                                                      | 羧丙基衍生物           | 交联葡聚糖   | 分子量大小层析               | 0.8   | 4      | Ge、Co | Ga       |
| 5  | 硅胶                                                                 | SiO <sub>2</sub> | Cl      | 特异性地吸附不同分子量、<br>极性官能团 | /     | /      | Ge    | Zn, Ga   |

表 4 不同离子交换树脂柱的对比

好的分离效果。硅胶柱有独特的介孔结构(比 表面积400 m<sup>2</sup>/g,平均粒径70 μm),研究表明 Ge 在硅胶柱上由于酸度不同而吸附量不同,据 此可以分离Ge 和其他元素杂质如Ga、Zn等,在 实际中,分离效果较好的是硅胶柱和 Sephadex G-25 凝胶柱<sup>[34-35]</sup>。

原子高科采用硅胶柱分离法进行<sup>68</sup>Ge的分 离<sup>[14]</sup>,首先使用 5%的 HNO<sub>3</sub> 煮沸2h 对柱体进 行预处理,再用去离子水洗涤数次。然后使用 9 mol/L 的硫酸或 10 mol/L 的硝酸体系上柱,再 用 10 mol/L 的硝酸溶液淋洗杂质。采用 3 mol/L 硝酸作为<sup>68</sup>Ge 解吸液,然后加热除去解吸液中 的硝酸,最后用 0.1 mol/L 的盐酸浸提 7 d, <sup>68</sup>Ge 的溶出率可达100%。

美国布鲁克海文国家实验室(BNL)主要 采用 Sephadex G-25 凝胶柱的柱分离<sup>[1]</sup>。使用 4 mol/L 盐酸和过氧化氢加热溶解辐照后的靶 件,再将溶解后的靶材加入到 0.25 mol/L 柠檬酸 钠的 PBS 溶液中,用氢氧化钠调节至 pH=12.5。 将上述溶液加入 Sephadex G-25 凝胶柱中,最后 用 3 倍柱体积 0.1 mol/L 盐酸解吸<sup>68</sup>Ge。在后续 研究中,使用 Sephadex G-25 凝胶柱前增加了 AG1-X8 树脂柱<sup>[21]</sup>,以提前去除<sup>65</sup>Zn 杂质。经多 次实验,最后选定了 AG1-X8 和 Sephadex G-25 柱 组合柱分离法,使用该方法获得了 2.5 Ci<sup>68</sup>Ge,分 离方案示于图 4。



#### 图 4 改进后的 AG1-X8/ Sephadex G-25 分离方案 Fig.4 Improved AG1-X8/ Sephadex G-25 separation scheme

除此之外, BNL 也开展了 Chelex-100 树脂、 AG50 树脂柱和 Sephadex G-25 凝胶柱组合分离 的研究<sup>[36]</sup>, 以更好地去除<sup>65</sup>Zn。同时分离纯化 出<sup>65</sup>Zn, 将其用于锌的代谢研究。

柱分离法是一种常用的分离纯化方法,其 优点在于避免使用萃取法的有机溶剂,确保<sup>68</sup>Ge 产品能用于药物和医疗等领域。柱分离法的装 置并不复杂,操作也较为简单,易于实现自动化, 因此该方法适宜在<sup>68</sup>Ge的规模化生产中使用。 但是由于 Ge 和 Ga 的氯化物都易挥发,因此 <sup>68</sup>Ge 的自动化分离必须在全密闭体系下进行。

2.3.3 蒸馏法 蒸馏是一种热力学的分离工 艺,其分离原理为利用混合液体或液-固体系中 各组分沸点不同的特点,使低沸点组分蒸发、 再冷凝,以分离整个组分。GeCl<sub>4</sub>和 GaCl<sub>3</sub>都具 有极高的挥发性<sup>[33]</sup>,GeCl<sub>4</sub>在常温下是一种无色 的发烟液体,熔点-49.5℃,沸点82~84℃;GaCl<sub>3</sub> 熔点77.9℃,沸点201.3℃。可采用蒸馏的方 法,使<sup>68</sup>Ge从其他金属中分离出来。南非国家 加速器中心(LABS)报道了以蒸馏法作为分离 纯化方法<sup>[24,37]</sup>,利用 GeCl<sub>4</sub>的挥发性,将 GeCl<sub>4</sub> 收集到特定容器,可除去除镓外的大部分杂质, 蒸馏分离示意图和实物图示于图 5。

具体分离方法为:首先将辐照后镓靶切开, 然后用加热的王水溶靶,以确保所有靶材均已 溶解,且<sup>68</sup>Ge已挥发完全。再连接到含有1.0 mol/L NaOH和2gNa<sub>2</sub>SO<sub>3</sub>的冷阱中,通过配备有调节 器的真空隔膜泵(Stuart RE3022C)将挥发性物



图 5 南非的蒸馏分离示意图和实物图 Fig.5 Distillation separation diagram in South Africa

质转移至挥发性活度阱。然后将上述溶液加入预平衡的 AG MP-1 大孔阴离子交换树脂中,最后用 0.1 mol/L 盐酸解析<sup>68</sup>Ge。其中安全瓶用来防止非挥发性放射性物质从反应容器中溢出。

蒸馏法的优点在于不需要使用系统组分以 外的其他溶剂,从而保证不会引入新的杂质。 但缺点一是在蒸馏过程中使用设备较多,容易 出现泄漏,进而导致<sup>68</sup>Ge损失并导致污染;二是 影响蒸馏效率因素较多,如果水蒸气用量、温 度控制不当或操作人员技能和经验不足,都会 导致目标成分不能完全转化为目标产物,从而 影响结果的准确性。上述三种分离纯化方法都 有一定的应用,并且均取得了较好的效果,对比 结果列于表5。其中,萃取法多数要用到有机 溶剂如四氯化碳、甲苯等,溶剂残留不可避免, 与FDA的要求不符,不利于后续<sup>68</sup>Ge-<sup>68</sup>Ga发生 器的开发。蒸馏法和柱分离法均有较好的分离 纯化效果,柱分离法的密闭性更好,可以减少 <sup>68</sup>GeCl<sub>4</sub>的挥发,提高<sup>68</sup>Ge的回收率,同时也可以 有效地减少因<sup>68</sup>Ge挥发对系统和环境的污染。 因此,柱分离法是<sup>68</sup>Ge分离纯化研究和应用最 多的方法。

| Table 5 Comparison of three separation and purification methods |              |           |       |  |  |  |
|-----------------------------------------------------------------|--------------|-----------|-------|--|--|--|
| 项目                                                              | 萃取法          | 柱分离法      | 蒸馏法   |  |  |  |
| 工艺效率                                                            | >85%(多次萃取)   | >86%      | >88%  |  |  |  |
| 核素浓度/(Ci·L <sup>-1</sup> )                                      | 85~100       | 260       | 20~30 |  |  |  |
| 辐射防护水平                                                          | 开放式操作,可能有气溶胶 | 可以实现密闭式操作 | 密闭式操作 |  |  |  |
| 产品质量水平                                                          | 有机溶剂残留       | 质量较好      | 质量较好  |  |  |  |
| 自动化程度                                                           | 较难自动化        | 可以自动化     | 可以自动化 |  |  |  |

表 5 三种分离纯化方法对比

### 3 结论

近年来,国内外在核素<sup>68</sup>Ge的加速器制备 技术方面虽然取得了显著进展,一方面,通过优 化靶材制备工艺和加速器辐照方案,提高了 <sup>68</sup>Ge的产额和产品纯度;另一方面,开发了自动 化分离装置,提高了分离效率和可靠性。然而, 当前技术仍面临一些挑战,如进一步提高<sup>68</sup>Ge 的产额和纯度、降低生产成,以及实现大规模 商业化生产等。未来,随着技术的不断进步和 应用领域的不断拓展,核素<sup>68</sup>Ge的加速器制备 技术有望在肿瘤早期诊断、精准治疗以及新药 研发等方面发挥更加重要的作用。同时,实现 <sup>68</sup>Ge的自主化生产和商业化应用也将是我国核 医学领域的重要发展方向。

#### 参考文献:

- Fitzsimmons J M, Mausner L. Production scale purification of Ge-68 and Zn-65 from irradiated gallium metal [J]. Applied Radiation and Isotopes, 2015, 101: 60-64.
- [2] Lin M, Waligorski G J, Lepera C G. Production of curie quantities of <sup>68</sup>Ga with a medical cyclotron *via* the <sup>68</sup>Zn(p, n)<sup>68</sup>Ga reaction[J]. Applied Radiation and Isotopes, 2018, 133: 1-3.
- [3] 李方.<sup>68</sup>Ga标记显像剂的发展:核医学的进步与契机 [J]. 中华核医学与分子影像杂志, 2017, 37(3): 129-131.

Li Fang. <sup>68</sup>Ga-radiopharmacueticals development: Advances and opportunities of nuclear medicine[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 2017, 37(3): 129-131 (in Chinese).

- [4] 王新强,赵文锐,川玲,等.<sup>68</sup>Ge 源与 PET/CT 的质量控制[J]. 医疗卫生装备,2012,33(6):110-111,146.
  Wang Xinqiang, Zhao Wenrui, Chuan Ling, et al.<sup>68</sup>Ge source and PET/CT quality control[J]. Chinese Medical Equipment Journal, 2012, 33(6): 110-111, 146 (in Chinese).
- [5] 李龙,周赛,丁颂东,等. 医用<sup>68</sup>Ge-<sup>68</sup>Ga 发生器研究进展[J]. 同位素, 2023, 36(2): 247-258.
  Li Long, Zhou Sai, Ding Songdong, et al. The current development status of <sup>68</sup>Ge-<sup>68</sup>Ga generators for medical use[J]. Journal of Isotopes, 2023, 36(2): 247-258 (in Chinese).
- [6] Horiguchi T, Kumahora H, Inoue H, et al. Excitation function of Ge(p, xnyp) reactions and production of <sup>68</sup>Ge[J]. Applied Radiation and Isotopes, 1983, 34(11): 1531-1535.
- [7] Mirzadeh S, Lambrecht R. Radiochemistry of germanium
   [J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 202(1): 7-102.
- [8] Mirzadeh S, Lambrecht R M. Radiochemistry of germanium[J]. Journal of Radioanalytical and Nuclear Chemistry, 1996, 202(1): 97-102.
- [9] Agency I A E. Production of long lived parent radionuclides for generators: <sup>68</sup>GE, <sup>82</sup>Sr, <sup>90</sup>SR And <sup>188</sup>W
   [J]. 2010: 2.
- [10] Alves F, Alves V H P, Do Carmo S J C, et al. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets[J]. Modern Physics Letters A, 2017, 32(17): 1740013.
- [11] Cheng W L, Jao Y, Lee C S, et al. Preparation of <sup>68</sup>Ge/<sup>68</sup>Ga generator with a binary Ga/Ag electrodepositions as solid target[J]. Journal of Radioanalytical and Nuclear Chemistry, 2000, 245(1): 25-30.
- [12] Gleason G I. A positron cow[J]. The International Journal of Applied Radiation and Isotopes, 1960, 8: 90-94.
- [13] Loc'h C, Maziere B, Comar D, et al. A new preparation of germanium 68[J]. The International Journal of Applied Radiation and Isotopes, 1982, 33(4): 267-270.
- [14] 沈亦佳,傅红宇,罗文博,等. 电沉积法制备加速器生产
   <sup>68</sup>Ge 用镓镍固体靶[J]. 同位素, 2014, 27(1): 50-54.
   Shen Yijia, Fu Hongyu, Luo Wenbo, et al. Preparation of Ga/Ni solid target for cyclotron-produced <sup>68</sup>Ge by electrodeposition[J]. Journal of Isotopes, 2014, 27(1):

50-54 (in Chinese).

- [15] 李廷取, 刘祥玲, 刘文异, 等. 纯铜管式换热器电镀镍工 艺[J]. 电镀与涂饰, 2022, 41(15): 1049-1052.
  Li Tingqu, Liu Xiangling, Liu Wenyi, et al. Nickel electroplating on pure copper tube heat exchanger[J].
  Electroplating & Finishing, 2022, 41(15): 1049-1052 (in Chinese).
- [16] 傅红宇, 罗文博, 沈亦佳, 等. 一种放射性<sup>68</sup>Ge 溶液的制 备方法 [P]. CN201110200074.6[2024-09-20].
- [17] Sounalet T, Michel N, Alliot C, et al. Strontium-82 and future germanium-68 production at the ARRONAX facility[J]. Nuclear Data Sheets, 2014, 119; 261-266.
- [18] Valdovinos H, Graves S, Barnhart T, et al. Simplified targetry and separation chemistry for <sup>68</sup>Ge production [C]//Proceedings of the 15th International Workshop on Targetry and Target Chemistry. [S.I]:[s.n.], 2015.
- [19] Bao B, Song M. A new <sup>68</sup>Ge/<sup>68</sup>Ga generator based on CeO<sub>2</sub>[J]. Journal of Radioanalytical and Nuclear Chemistry, 1996, 213(4): 233-238.
- [20] Naidoo C, van der Walt T N, Raubenheimer H G. Cyclotron production of <sup>68</sup>Ge with a Ga<sub>2</sub>O target[J]. Journal of Radioanalytical and Nuclear Chemistry, 2002, 253(2): 221-225.
- [21] Aardaneh K, Aardaneh K, Aardaneh K, et al. Ga<sub>2</sub>O for target, solvent extraction for radiochemical separation and SnO<sub>2</sub> for the preparation of a <sup>68</sup>Ge/<sup>68</sup>Ga generator[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 268(1): 25-32.
- [22] Bach H T, Claytor T N, Hunter J F, et al. Improving the survivability of Nb-encapsulated Ga targets for the production of <sup>68</sup>Ge[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 299: 32-41.
- [23] Meinken G E, Kurczak S, Mausner L F, et al. Production of high specific activity <sup>68</sup>Ge at Brookhaven National Laboratory[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 263(2): 553-557.
- [24] van der Meulen N P, Dolley S G, Steyn G F, et al. The use of selective volatization in the separation of <sup>68</sup>Ge from irradiated Ga targets[J]. Applied Radiation and Isotopes, 2011, 69(5): 727-731.
- [25] Arzumanov A, Borisenko A, Ignatenko D, et al. Technique for irradiation of nb-ga targets at kazakhstan isochronous cyclotron[C]//17th International Conference on Cyclotrons and Their Applications. Tokyo, Japan: [s.n.], 2004.
- [26] Silverman I, Kijel D, Arenshtam A, et al. SS316L as

window for production target for Ge-68[J]. 11th International Topical Meeting on Nuclear Applications of Accelerators, AccApp, 2013, 2013: 226-230.

- [27] Hermanne A, Adam-Rebeles R, Tárkányi F, et al. Proton and deuteron induced reactions on natGa: Experimental and calculated excitation functions[J]. Nuclear Instruments and Methods in Physics Research, 2015, 359: 145-154.
- [28] Qaim S M, Tárkányi F T, Obložinský P, et al. Chargedparticle cross section database for medical radioisotope production[J]. Journal of Nuclear Science and Technology, 2002, 39(sup2): 1282-1285.
- [29] Adam-Rebeles R, Hermanne A, Van den Winkel P, et al. <sup>68</sup>Ge/<sup>68</sup>Ga production revisited: excitation curves, target preparation and chemical separation–purification[J]. Ract, 2013, 101(8): 481-489.
- [30] Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions [M]. Vienna: International Atomic Energy Agency, 2001.
- [31] Fassbender M, Arzumanov A, Jamriska D J, et al. Proton beam simulation with MCNPX: Gallium metal activation estimates below 30 MeV relevant to the bulk production of <sup>68</sup>Ge and <sup>65</sup>Zn[J]. Nuclear Instruments and Methods in

Physics Research, 2007, 261(1-2): 742-746.

- [32] Gulley M S, Bach H, Bitteker L, et al. Exploring the energy/beam current parameter space for the Isotope Production Facility (IPF) at LANSCE proceedings of the Proceedings of XXV Linear Accelerator Conference[C]// Tsukuba, Japan; [s.n.], 2010.
- [33] Mirzadeh S, Kahn M, Grant P M, et al. Studies of the chemical behavior of carrier-free <sup>68</sup>Ge[J]. Ract, 1981, 28(1): 47-50.
- [34] Fitzsimmons J, Mausner L. Evaluation of materials for the separation of germanium from gallium, zinc and cobalt[J]. Journal of Chemistry and Chemical Engineering, 2015, 9(7): 462-467.
- [35] Caletka R, Kotas P. Separation of germanium from some elements by adsorption on silica gel[J]. Journal of Radioanalytical Chemistry, 1974, 21(2): 349-353.
- [36] Fitzsimmons J M, Mausner L. Development of a production scale purification of Ge-68 from irradiated gallium metal[J]. Radiochimica Acta, 2015, 103(2): 117-123.
- [37] Arzumanov A, Alexandrenko V, Borisenko A, et al. Technique for irradiation of Nb-Ga targets at Kazakhstan isochronous cyclotron[C]// proceedings of the 17th International Conference on Cyclotrons and Their Applications. Tokyo, Japan; [s. n.], 2004.