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Abstract: As a positron-emitting radionuclide, “Ga labeled radiopharmaceuticals are widely used in
positron emission tomography (PET) imaging to diagnose tumor-related diseases. Currently, %Ga is
primarily supplied by *Ge/®Ga generator. However, this approach is best suited for situations

requiring small quantities of %Ga or lacking access to a cyclotron. Alternatively, researchers
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worldwide have explored the direct production of *Ga using cyclotron, employing solid or liquid

targets via the 68Zrl(p,r1)68G21 nuclear reaction. This cyclotron-based method is ideal for generating

larger quantities of %Ga where cyclotron facilities are available, thus serving as a vital supplement to

the generator method. This work reviews the status of direct preparation %Ga in accelerator. It details

the key steps in targetry, target chemistry, and %Zn recycling, aiming to support %Ga related

research.
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Table1 Comparison of different BGa preparation methods
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Fig.2 Excitation function of GsZn(p, n)ssGa, GsZn(p, 2n)67Ga, 67Zn(p, n)67Ga, 67Zn(p, 2n)66Ga and “Zn(p, n)“GaIlSI
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Fig.3 Thick target yields at saturation (solid curves) and excitation functions (dashed curves) for the production of 66Ga,

“Ga and ®Ga from a typical proton-irradiation of BZn targe
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2010 4%, Kakavand fRi& T —FP UL L 3G
HL B A A A O R O B M4 Ay o 27 g/lL
ZnO+7.1 g/L KCN+11.1 g/L KOH, 4 % /& R 2 Ky
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Fig.4 SEM of a zinc deposit on the Cu backing
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7n i 32F Comecer Hi, L 2% T F2 £ 45 (EDS) 3 il
B HLBE BE SR . B WO 4Y N 40~ 50 mg Y & AR
57Zn( F i >99%)+5 mL 2.2 mol/L NH,Cl % ¥k , Hi
JE N 2.4~27 V, BN 15~ 28 mA, &<
1.5 mL/min; 4% & F2 p pH 32 W T %, 76 500
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HURE R SR BF al B B il 2R s 4R ¥ 4E . &
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REAZ /I, 38 B (L RE AR 32 BRI B35 [ B A 4
H1 T B S HUAR R B BT AP A HE DL R A
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2019 4, Zeisler %5 ) {ifi FH J i 3 i 4 1 K
SRBE G B A AR, BAK Ty R (W R ALK
150~ 300 mg K 4R 4 J& BF J8 (4l i 1k 2% 99.9%)
TE £y 12500 MPa T J il i B 42 24 10 mm Y /)s
BR; PR RS BRI A B AR R
0.3 mm 1.0 VA h | 7E 450~ 500 °C T #A 20~
30 s LI A, B A 5 T RS 406 K 4R B 8 26 1 i
oo FEHIE A LF 0 RKIREE 4 TR A R SR T8 S
DL T fiE i 12.8 MeV, 35k & 20 pA 18 5t %
FAREE 4 JE K A 15 min, ®Ga (19741} 3.1 GBq
(EOB).

2020 4, Nelson & fig 1 1 H il 43 K 42 J@ B
O 4 O s R W AR Pz B R (R
99.3%) %% AME AL AN G5 A H b, i W R AILRE
H R4 4 H AR 10 mm, JE 400 pm B9 R, IF7E
25 S L 350 °C BE 4 5 h DL v BR P G 1 I 1
FAE Rt . 205 Ul HAR B HE, #E4E 4% 24 mm,
JERE 1 mm, HOA —EAR K 10 mm, YRR 100 pm
TR R R A 4 R TR R AR SR

B 5 %% ¢10 mmx0.3 mm A0 ME#) 435 mmx1 mm 5 E8FEF0 150~ 300 mg KRR EE (a) AR AT G EIKIBE B
I )

Fig.5 Target plate preparation. A $35 mm x1mm aluminum backing plate with a ¢10 mmx0.3 mm recess for the target

material and the pellet formed from zinc (150-300 mg) before fusing (a) and Zinc pellet fused to the backing plate before

polishing (b)
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G o T 00 AR A TR R R MR IR 61,
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J5 - o 4 R 3% S 2 20 min, SR FH 28 K ¥ 3L
4 HI, CGa i 77 B 4 (13.8+1.4) GBq, 1 Fil 7=
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Fig.6 Target consisting of a ®Zn pellet pressed onto
124]

a silver backing

2021 4, Thisgaard 251 #4 230~315 mg &
4 )8 % zn B K CF BE >98.2%) JE 1 B 4R #E 4T
PL 13.0 MeV 80 pA Y i F R 5 I8 & £ & 8
70 B AR HE 2 h, “Ga 1977 %N 194 GBq(EOS).

2.0.1.3 BRGEED BEOA Al FHAE R A LA PR % Ga,
FE LA RRAEEE N T, Bl 4 S zal 720,
6 R JELBE S L 10~250 pm, 32 AR YE T 75 “Ga
7R L AR AR R T AR R S S HOT i R AT
PR

1996 4F, Lundqvist 25 5% FH R 4K B 1 0 )
# “Ga, K H B4 15 mm, J& ¥ 43 514 50 mm,
100 mm H1 150 mm /) K 28 F 9, FR 5 5 il 5L
0.8 g/oem’ (Y M B BEGH , B EHR AT, L
12 MeV., 5~ 10 pA Jit 7 5 8 B8, B L
5 F] 50~ 70 pA-h, £ 9 EE 100 um, ®Ga
P24k 1570 MBg/(pA-h).

2021 4F, Siikanen 25 P 4 i T R FH B 4E B
SE ] 45 P Ga (977 5, R JH ELAR 15.5 mmx0.1mm
4 5T 4 Zn BRI (R 98.8%), ®Zn B I L 4
140 mg, VABERE A 12.6 MeV, Jfi 7 I 25 pA,
R 5 % 97 8 68 min, *Ga Y 77 % (31£1) GBq
(EOB).

=R R Oy kA B A B L S
2, HUBEEERGE A B, DUMGER I R, ROR S
wh, (EL A RE R, 3 FH Tl B R A A A
PR R R AR HE 8 e Bl A5 AR HL
O S g, A AR I S L R AR G v, R T ]
We, iE T S8 = /N B R L A . B
SRR 2, A bR, R AR R, 3B T R
S PR BT T 3 S, R DR 52 B

%2 “Ga = EKEE & TR

Table 2 Comparison of different ®Ga preparation methods

[zE 3] AL JEHIR A PETEH
AR X TARZA 1 em® ISR 5~10 pmC5F 100 pm(100 mg 4¥H5) 50~150 pm(FRELZY 140 mg 55

PUBUE(3622) mg, A 7.14 g/em’ ffHD
HUbEHE EE S50 B, RETH A2 0T IR, MUAGR B e

il £ i) 2.5~3 h/Eisp
A A RAESC T A M . W AEERERED

ZMUEI S HRAS A PR, SR SRR PR AR B H— 2 BT, Wl

CEEBETE 3.18 glem™, HUMIRIE S 52 400 °CHIEA R i -4 e A oy
1.75 h/10 2 5~10 min/HLH0
FRORMEFETEEMA . SRS mCEEREMNERE . RO
e RS )

2.1.2  [EREESr B T2 ERHE AR RS 2T
Ga B L2 4y B G a4k, Bk 25 %Zn B Hifh 24
A AL BE R . Ga (43 B 4l Ak 5 B A 45 4
8 )2 53 B 1, FA R A3 1 1 RS R 2 Uik = b
2120 HOZE0EE 1 %Ga kB Mg,
16 IR T SR 10~ 12 mol/L £ 2 5 7£ 60 C
K FH 6 mol/L £k R Fl ik 48 Ak & fifk i BEUS 1 [
PR A U0 T A0 SR VR TR B P A

Szn® B Zn® (2 ST FO), A 5 IR A 0 H bR
B & Ga (v B ), G’ M Ga’ Gt A
i Ga’ 1 2%) A K S B B AR 51O B B it
Fe’' A4 LR 4% T AR ()25 8 1 4 4 0
T [ 5 AR R 2 A ] 09 43 Bc 22 5, 38 3 3l A
BT - e W8 ook 2 S R B, LA R ORI L G S
) . KAttt F B A 5 45, 35 A ok o
% %Ga W92 B itk
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2018 4, Lin % 1738 7% AG 50W-X4 [
B 28 ¥ M UTEVA 2 U JIg SUH: 43 29 46 1k 38
i3 B A 45 19 G, 4 B IRl AG SOW-X4
TR 1740 ik 2 ik B 08 B HY, Ga™ 25 11 85 1 5 HV gk
A7 58 e I 4 W B 2B b, B S 7E 3~ 4 mol/L
R AR, Fe™TL zn®t. ALAE 0 B ) A i
b, Ga¥ VR F Ok, SEBL Fe® A AR B T 2 B
Ga® " 7E & Vi B £ % (4 4~ 8 mol/L #h g h 5 CI
T RS € 1Y GaCly 5 7455 %), UTEVA R ig
Xt AT AR i A AEHCRE 7, e H N B oAt 4%
Jo B4 35 T R A IO R, iE — 2B 4R R % Ga 1 4l
FEo ArES R R S, SR 10 mol/L #h iR i ik
AG 50W-X4 [HE 1B BEHE, L2 B HAth 4 8 4%
S B, FH 4 mol/L 45 *Ga™ M\ FH B 11 Uk
R, 5 6 B 28 2= UTEVA 2 BUW g AL &%
J& , {8 0.05~0.1 mol/L £ 2 B B Ga, A1 i %
>75%, “'Ga <0.2%, 43 & i [A] <10 min.

2020 4£, Nelson™ 5% ] AG 50W-X8 1 % 1
SE e A UTEVA A OB iE XU [ 3h 1k 43 2 56 IR
J5 B [ A % zn #8 . ®Ga 77 #i ik 194 GBq(EOS),
[0 R K (76.7+4.3) %, 2215 *°Ga F1 "Ga B 15
0.016%. *Ga (755 5 1 4% 4l & >98%, Wi 1k 4 i
>95%, 43 J& 2% i Zn<10 pg/GBq, Fe<10 pg/GBq™,
T JE IR U 24 LR

Alves 293 2 g <7 7 B B 1 5 B B T XL
BB R, B RAE N |5, 4 3 mol/L
12 N DOWEX 50W-X8 1 i £ 3t Jit “Ga™"; bt
J5 . HIK 0 8 mol/L £k R 19 IR & Vs W ¥ Ga® hn 4%,
F| AG 1-X8 B 5 A%, Jiti Jn 15 1 S MR LA T
AR I BRI B R B, K Ik BE AR B AR 15
3%GaCl; % (0.1~0.25 mol/L #: iR IE ). ®Ga
(T A 20 K 98.9%, 41, . FEE S R RS
<100 ppb.

2020 4F, Alnahwi 251"V fdi Ffj 7 mol/L A 2
VSR, e R B T WS W pH=2 S, R R
2 B B (Zr B BE ) FI CUBCX123 BH B 1 52 4 1)
g WUAE 43 25 44k ©Ga, 2> B B R . FIH Ga™' 5
Zr B JIg 12 i 1 ik P 1 5 2 5 A FH SE s 00 25 4y
B, B4 CUBCX123 Wik —wkalifk Ga''. 4
TRE N 1, A 0.75 mol/L 15 R M Zr 4 i I
Vel P Ga; B 5, 5 VE B RIN 4R = CUBCX123 7
B AE 1, FH 0.01 mol/L 3 R ¥ i ©Ga™"; &% )i, fi
FH YR & UE G F) (5 mol/L NaCl+5.5 mol/L HCD i

HGa I . “Ga BT A% 40 >99.9%, 4 |
B AR SRR T 5 <0.5 ppm,

2122 BYTEO BT RYTEO B
Zo U R EL T R . R TN 28 55 R Y
BETE RGN R S A B R S ALy i 4
B IT A Gy, AT I RO Bk DS B
B 4 85 o AR EIOA B 0 T B Ry R B 0 A
(420 °CHFVERJE 5 (30 COBY 25 5, 76 & T I 4%
A TEAE B oh ELAE b TR H0 e 1T, LR 9 o
B (2403 0O, ZRIRIEARME, BO6 14 B2 7 BF 0
) 2 THT L PO ) 559 198 R 90 1 ) o A R DA S BB
14 42 B

1995 4, Tolmachew™ ™ 3B T — Fif ®Ga 4

PO Bk, e )5 5 0.05 mol/L bR . 251
IR T K 2 BE L % %o 22 V) T 19 B G, o B 7
BT AR 08 b B, AR 400 °C,
R 5 B 56 R BE R 6] 3% B8 R [6)in 34 i ) (15~
90 min), & R IR =k, 5 55 R R Bk
PEEC Ga, Y BLHEI<15 min, 43 ] <30 min,
OY BB >60%, B A S Zn BN T 0.5%.
2123 HRIFERE BRGENEIRENE
AL, 2 3 500 A B T P T 1] 1A HE 4 45 Ga 1Y
O3S o VR AE ORI Ak B 0 e 1 R0 rhoRE X i A
BE 2% AR AT 4y B o B 9E 3 W ORI SR TN I uk
4-FP B -2 A S A B R 1T, ol i R R B
SR AR KA AA ML IR A, FEIR A Z )5 I #E
B MU, TS PR 5 8 A 0 .

2019 4, Pedersen 250 J5 T 185 1) 7 21 W - Yk 2
B 92 B AR B4 B °Ga M Zn, S TN K/
SRR LGN Ga B IR N (76.3+£1.9) %,
X Zn B ISR N (1.9 £1.6) %; 1F T H Bk /=
S HH R AE IR 480 Ga 19 [T % (95.742.0) %,
X Zn B A1 3R g (0.005+0.003) %, Hd, =4
P 25 1) 4 1 K R AN A LA =2 ) B 1 5K T 4 5
HEVEF . BRIV AR BOE B, (A sk
e, H%Ga oK .

Ga 2 TE 155 S, B Ak 4y B 5 A4k Y B )
JEH B A L T AT B R R 2R U,
H 2B E 5 T A sk, Hi®Gam
b Ak A 72 0 £ R ] AG S0W-X4 BH B 32 4
FUTEVA # UM IS A XUR: 43 89, 15 %1 9 ®Ga it
AR E L WIS R, R A R B RRO 2 SR
o, 6 A Ga U R 2 P bR ic R P
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22 HEBH EPGa

TR I R 3 AR 4 Sz B R
it 0 R G R SR R T DD, i £ 34 5
WASHAA, 28 T T A o & 4 ©Zn(p,n) P Ga B
7, SEGa B ELHE R % o
221 WARHEHIE T Z SRR R CFH
i 5 TR 12 ) Y25 A8 7 41 ©°Zn B0, i 45 ©Zn(NO3),
B ZnCl, ¥ W2 A RS AT B AR AT B
FH T 28 BT 7 48 I . 7E ZnCly W14 B 4 1R
W, BT F R K R R B A MR ARUR
T 368 S s PN T 30 8, T) o, 25 5 5 | e
T 1) JE et 5 T 6 FH Zn(NO3), ¥ 80 T I 35 I A
FA 7 R A P A, TR IV M O 16 Zn(N ),
VW, B AL T AR ROK AL AR Y, A
R A6 30 0 N T RE R 12~ 14 MeV, 3 5 &
45 pAlM S Ga B e T R 0 4 TR T A
zn e gl

2019 4E, Pandey % OV I8 T WK #0 ) A
%Ga, % JH 1.7 mol/L & % *Zn(NO,), I Wi (fk 2%
4li i 99.23%), FH L I AR FR R 1.6 mL, 4H B FE 4
i E 0.20 mm 45§86 A1 0.038 mm Havar X AL §E, &
B, L 14 MeV, 20 pA Ji 1 5 3 46 IR
30 min, ®Ga = #i & (192.5+11.0) MBg/(pA-h), ¥
iE EOB % ## 5.20~ 6.27 GBq/pg, *Ga % it 5 4
% 48 £ >99.9%,

2021 4F, 28 4 25 P8 4 HH O F 9 R S 45
%GaCl; J7 1, % H IBA Cyclone 18/9 [l Jiig fin
P8, TE 14~16 MeV, 35~45 pA i 7 i N %
7 %Zn(NO;), Wi 1A 30~ 70 min, ®Ga 1 = & K
4.25~5.00 GBq.

2014 4, Pandey % Y i 3o 1F 1 2 % /A5 M
K 1 BT ¥ 2R T, 7E 14 MeV T T 3T 52
Bl Zn(NOs), T 74 $E 1 1 1% F& Fa &2 iz 17 4 B8
(< 689 kPa), 2017 4F, Alves %5 ") 2 45 14 B 5%
Zn(NOy), kM E | FE A )R 5 H0 . (<3.5 MPa)
XoF AL A L A R S T R i, B S TS ol A R
TSR I, O R ) SRR AR 1 B R A T Ak
%Zé[w-m .

222 WA TZ B ERAARR B LA
)24y 85 ¥ £ . 2019 4F, Riga™" 45 % 1
Zr 14 g 1 = o ik i A R (TK200) 241 45 43
B A R A 1 °Ga, H B RE N: B e
0.1 mol/L il R Pk ¥ Zr 4 IS A LA 25 Zn™" | Fe'™',

Cu’ "% 4 J&@ 2 0, i Ga i B4 7E (il b b 1
FH 2 mol/L £b % ¥k Ji 5Ga™ I 14 58 7 TK200 F fi
HE 1 5 0.1 mol/L & iR s Ak vk i *Ga®, 43
BRI 32 min. [ 4 2 >80%, “Ga F LT
% 4l i >99.9%, 2% 5 *°Ga<0.005% F1Ga<0.09%.

2021 45, ZE i E 25 O f 4 IR S 19 Zn(NO5),
VL A 00 3 3 iR PH B F 58 40 € 3 B (I 2 Ao
KR BRI - LR ERBREY,
T HEET), KK LL0.5~0.84 mol/L S IRAR . A
B L 7K 7 VR I 2% B . 3 mol/L 3 iR ¥ I *Ga™',
43 B I 18] <30 min, ©Ga 4 7% 51 4% 4l 1 >99.7%,
Jit B 5 Ge /P Ga K LE 25 45 10 P Ga M2

TE N0 8 2% B4 ) 45 Ga U, [ A 15 )
ARG RN B ENHERER, £ HEA
PO A PR R R M L B O A R R R R
gelo2 B B K, $VL FRCR I, AR ARE
KA BR T AL, ©Ga 7 it i S 3, 5 H 7 40 A
SGa 4y B LAk IR &, T 4 A AR 1) e IR
OY S AESERI NG o A LT R, AR R S
WU 7 Ak 7 B0 A, Zn/*Ga 43 85 4l 4kt A
7 B, (FL 2 VM B ) A ¥ ZD M R SR B
— B A RUK AL A A R R W
S TR S ZH s WO R G4 R ALY
Tl AR R B B T R AR . RLIG, TT
R S92 o 195 10 6 438 45 135 1) M 2R 45 i 4 G
23 EE& zn M RE

IR AR (zn £ 3 18.45%) rp 41t 42 1l £ &
4 SznCFBE>99%) T 200k i 8k, Bl % 41k
KA 0, AR e A A v L AR R AN R B
Tl 2023 4F, &% BAL B @ PP Senk w4
SZn il HAR, R SRE O, LR
IR, B B0 AR E R AL S ZnC R <0.5%) 1 N
HRL, 81 B R G L o B, 45 Czn
>99% [ 7™ iy, Wit 5 AT Is 8 T g, T 2
PR A FH P i oK o 207 VR I ROAS A 5 B 0 T
FEAR 35%, 43 5o B 3230 T o6 M 42 5 P Ga il
2B, T S Ak 0 4 %z IR [ i
REAEEE L, Mo EW, &% %2 iy
¥ K AL R 5 CGa B 43 B Al AE T2 BB A O
B0 W IR S T, TR R R kAT £
WA # % TR R J7 3E ©za, i R
>90%; WL AN, HL MR RE €0 )2 43 B 45 et T
B AESZn [k,
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Wuest 25 P4 42 18 T H e (] g T D oK $
g 4 %Zn J7 B W) BR 500 mg Bzn MM TE SV
1.5 A S8 F s T A 120 min, [ 0% Zn i & K
(383+21.5) mg, [Ny (76.7+4.3) %,

De Grado 250 I 4 7 VPR HE 1] 75 45 % Zn
Tk it AG-50W-X8 FH 5 52 e B g ik £
PEW B FIZAk, SCBL T Zn HUR Y RIROR (82.6+
13.6) % FI 5 20 i (>99%). ELAK 2 K. 1 %,
Wi 4E % Ga 43 85 5 & % Zn B BRI, T 1 W pH
<5.0 J5 In#k & AG-50W-X8 B g+ 5 Bl 5 , #K Ik
JH 7K T 8 mol/L il & V4 W Uk Jid 25 BR Na'™%5 2% i,
AR5 4 (19 P Zn(NOy), 1R s T , il i i i
7% % RV T b 2345 3 [F 4 19 ®Zn(NO3), xH,0,
A E M TS A 77 . MP-AES 43 i &
W, 1™ 9y v 32 22 2% i IR i NaNO3(<0.5%),
Ni. Cu. Co. Fe. Ga % 4 J& & & Ik T A M BR, £F
A AR IE o 47 2% & 5>2.0%, Al HA ikl
bl B A R R

3 HiE

®Ga 1 4y 1E BT 1% 3, bR 0 9 i 25
Yye )z i F G IR PET AR, 76 28 9 43 1
i Jed | i ) R Y S B2 W TP e 1 AR A
54 ©Ge/*Ga % 1 25 [F 7 1k In) A1 R 11 s 1 )37
FH R 00 3 4 T 4% ) 4 CGa il T B AR
(R el 17750 N SR == ) | B
iy AN, A AR 0B s 5 A
KPR L 0 25 T 28 B Ga (1 7 i
TR A RV R S 1LY R NS VRS B S VA N
B A I ] 22 4t U B A ™ L 3, (H 32 PR T
O 2 B Ga e N s [ R 4 R G
U 38 3k P AR R S Ga B R E | AR E
7, EL T A L T S e i RS, AR, 22 A M A
g YRR L D ] A B AR g% £ T 23 i) 15 T I
PR IR 5 MU S5 1 245 1) 2 7 E K o, R 4 T
®Ga 7= i M AR IC RO PE 2 P R RE . ROR
®Ga il £ B A 500G BAE T HORIEM I & | 8
WAL, 8 o 48 T | IR SAS B BE
IO FH 3 55, # 3 Ga S M 24 4 A I 3R 25 5
2 W 5 TR P R S R
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