§138% 4 4] w2 = Vol. 38 No. 4
20254 8 H Journal of Isotopes Aug. 2025

INTRABEAM % % 7Kk IR U 551 = i 2 77 7%
Eb & 43 1

1,2 > 2 y 2 a0 1
FAEFANRS, ZELS | Xk
(LAREHM TR B 5 TSR, ME  330013;
2. EFEBHETF S BE, dLat 100029)

#EE: INTRABEAM 2 G 1E S HL 735 B BIIR T 09— Fl, il ad 7= A5 IR AE X 3 46 B3R 07 e, WEAR 09 77) o
2 ST B IR IR T I SR, 32 AR G0 AR S I e AR R B R Ok, R TR R E AT S . AR
S243H7 INTRABEAM 2 5t (9 7] B R 1, 2% BAE A [ 2K TR JBE e b 119 390 8 78 A 383 3 4830 o, T8 LU )
TER )M 1 | Zeiss V4.0 I V5 TARGIT Jrik . Co J7 655 AN ) (A 7K WSO 42 0 o2 07 123, & BRL7E 7)1 31
B EAFAEZESR  SATRRBEBUR | ST RE AR | By 7K b R T R 5 X6 0] W) £ 45 SR A ), LA AN [
KT RN T 25, MR REM, Sl WS TS % E . TARGIT J5 ¥ Fl Zeiss V4.0 J7 32 il & {H 7]
B ARAL T S2 PR K W I )t , JEVE SE Bt vl R M o E R, ST — S BRI o J B A K RO
N Tk A ST W R A RS B 1 0 O A

K4BiA: INTRABEAM £ Gt KW &5 S5 R U B4

FE 52 S: TL84 XHEAREE: A X EHS: 1000-7512(2025)04-0368-08

doi: 10.7538/tws.2024.youxian.105

Comparative Analysis of Water Absorbed Dose Measurement
Methods in INTRABEAM System

WANG Huaguil’z, LIU Chuanfengz, LI Dehongz, LIU Yibao'
(1. School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China;
2. National Institute of Metrology, Beijing 100029, China)

Abstract: INTRABEAM is a type of electronic brachytherapy that directly treats cancer by
producing low-energy X-rays. It has advantages such as precise treatment, ease of operation, and
protection of surrounding healthy tissues. The INTRABEAM system is favored in clinical
applications for its excellent dose distribution, especially in breast-conserving surgery for breast
cancer. Accurate dosimetry is essential for effective tumor treatment. However, the dose
measurement of the INTRABEAM system relies on indirect measurement methods, which still faces
challenges in achieving dose traceability. This study first analyzes the dose characteristics of the
INTRABEAM system. The results show that the dose varies with water depth in an x ° pattern,

highlighting the need for precise dose values at specific points. The study explores methods for
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measuring water absorption doses. It compares different dose measurement methods, including the

manufacturer’s measurement method, Zeiss V4.0 method, TARGIT method, and Co method, and

finds differences in dosimetry. The study also discusses the impact of water phantom scattering,

beam hardening, and the material and thickness of the waterproof cover on dosimetry, as well as

calibration factors under different measurement conditions. The research results show that the

reference values given by the manufacturer, the TARGIT method and the Zeiss V4.0 method may all

underestimate the actual water absorbed dose and fail to achieve dose traceability. Therefore,

establishing a water absorbed dose measurement method based on the absolute measurement

principle has become a key goal to achieve dose traceability and treatment accuracy.
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Table 1 X-ray tube model parameters

bkt
2
Au Be NiO Ni CrN
JEJE /mm 0.001 0.5 0.0025 0.0025 0.0025
J’E/(g-cm ) 19.32 1.85 6.67 8.90 5.90
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Fig.5 Photon fluence spectrum at 3 cm from the tip
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