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Abstract: Radionuclides with a diverse range of applications and high analytical efficiency to
promote multidisciplinary Innovation and developments, which are considered to be an essential tool
in the field of modern science and engineering. To gain a deeper understanding of the current state of
research on the application of radioactive isotopes technology in agricultural-related fields in recent
years, this paper focuses on its research progress in radiation-induced mutagenesis breeding for
plants, plant protection, soil and water conservation, both domestically and internationally. It mainly
introduces the applications of radioactive isotopes in crop breeding and pest control, tracer

technologies for the migration of nutrient elements of nitrogen and phosphorus at soil-plant-
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microorganism interfaces and at soil-water interfaces to prevent soil erosion, as well as the intelligent

analysis of radioactive nuclides. Based on the current challenges faced by radionuclide technology in

this field, along with the development of modern mass spectrometry technology, the research and

development of new radioactive isotopes, and the challenges and opportunities brought by

interdisciplinary integration, this paper presents prospects for the future development and application

of radionuclide technology.
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Fig.1 Different radiation-induced DNA damage and its repair mechanisms (By Figdraw)
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Fig.2 Application of radionuclides in agricultural resources and environment (By Figdraw)
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Fig.3 Radiation sterility and genetic sterility in insects
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