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Abstract: The medical isotope test reactor that utilizes uranyl nitrate solution as its fuel source has
certain advantages when it comes to the production of “Mo. This method has emerged as an
important developmental direction for the generation of medical isotopes. Low-enriched uranium
fuel is the trend of research reactor development, and the *Mo separation process of the medical
isotope test reactor under low-enriched uranium conditions is crucial. In this study, a comprehensive
analysis was conducted on the Mo separation and purification process using a medical isotope test
reactor that utilizes low-enriched uranium fuel. The research primarily focused on the development

and optimization of a novel method involving a combination of spherical alumina columns, an a-
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benzoin oxime column, and an activated carbon column. The outcomes of this research are

promising, as the combination of these three columns facilitated an effective extraction, separation,

and purification of *Mo. Moreover, through the production verification of the separation of Mo in

the low-enriched uranium simulated fuel solution by using this process, the recovery rate of Mo is

75.7%, and the impurities also meet the requirements. This process improves the production rate of

Mo of the medical isotope test reactor under low-enriched uranium fuel conditions, lays a

foundation for the low-enrichment of the medical isotope test reactor, and has great application value.
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Table 1 Composition of the simulated liquid in the
low-enriched uranium experiment
(Cy=225 g/L, Cuno,=0.2 mol/L)

5 IMATEER JEEWE(mg' L)
1 1 2
2 Mo 2
3 Cs 8
4 Ce 5
5 Sr 8
6 Zr 5
7 Te 2
8 Ru 5
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Fig.1 The variation in Mo content in the desorption

solution of the spherical alumina column
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Table 2 Recovery of Mo and I from spherical alumina

columns under different conditions

SR WE/(mL-min) BEAER/g B MoliR/% 1IE/%

a 1 1.5 3 39.8 322
b 0.8 1.5 3 443 40.5
c 1 3 6 64.4 59.8
d 0.8 3 6 87.4 89.5

AR R Bk R PR K W LB T
(MoOZ™ A7 £ , AL WL il 5 LA BT 8 T X
AR, Wi Tl h, & R 1 H,0, %
R At 7 AT AR, 8 T 00OHE 55 R AN 3 L SRR A
FRPEZAE T, W WP T S 1, 5103, 1,
R, RSAEAET WD D, VRO P
TEW W EZLUIOS A e . TEMRYEZRAT T, R

LA MoOZ™ | 105 4 W i T, X T i fth 4 )
BHEGF AN BFF o R a2 vk o, 4804k B0 AT A&
SR PR Z b SE I Mo AT 3R AR B

AR Ve Al S FUL ARV R 3 B A
it A e 4 L DL R B AR O 8 45 AL 2R S, 3RO
AL BR AR X Mo Y 42 BUR 52 T & 87.4%, XF 1 HY
PR 3 89.5%. 4% SR 3 W ] Sz BRIK vk b
WL W A R rp Mo R SRR B, [
UE BT BROE 840 B0 AT B % 107 FH T 5 U040 o i 9%
b Mo FI T AYHR L,

32 MofIZHE

TE o~ A JF5 0 A0 55 R N R Ao R o, R
R FH U0V A S B AR BE BRI B B
Boo SR, VT E R AR UM M O B AT 4R AR
A RRA Y A, HXELLSEH A k. MEZT,
43 85 7 SR N S o B G e T B, L
YEMRIE, &) T 928 A sh Ak, [ B 07 (8 A 51 B
o, BT N . AR o % B S
8 AN S, WHT Mo, 1478 T
2o TERMEFAMT, o-% B 5 vk £ 1 e
Mo, T T W0 JC ¥ i LW BRE, DA o T 7 Bk
ZAF T, Mo AT UM % B 5 e ok .
321 MREEX Mo, 1r BRI m KA L1
il WO YRR 1 IS [ v B A TR AR R, FH 30 A A
B RS o-Z BE G, SRR 3, K
WK S A5 AR B HNOS ¥ W 25 85 T /K ki o-
2R F AT, 1 mol/L 42 /K ¥ VR HE AT AR T
AR A S 36 i 0 S, A A R vk BE AR AL R, a-
% 3 15 A X Mo Y W B S AR ARG 0, it 2R
F & 2, B 207 0L, 76 R W BE AR F S mol/L
B, o2 B i A %) TR R A SR 5 R B i ke
AR SR, YA R W R ) 5 mol/L B, Bl % Al
PR e 38 0, o2 LA i A A B W B RO
TR B o R VA B TR I A5 A T HEAT VR, 4H
23 W6 A R 1 R 0 1T R it Uk .

MR IO, ao-Z B/ g
B2k HE RN, 3 o BN B EREAI R &
igk, Nl 2k o-42 B 75 5 X Mo 19 1 % W B
AR, Mo LBl 2 R DRI, 2R R Mo fiE T .

T s A7 i, WA R 0.1~
0.3 mol/L MRS R, fF ILAH PR VE & T, o- % B & 5
X Mo A B8 i W B 3 . PR, BE 4 0.2 mol/L
SRR R, ME N o-% B & M5 #3547 Mo, 143 B



26

W i & $538%

100

Mo W BfF4/%
o )
S )

I~
=)
T

20 .
0 2 4 6
RS /(moL-L™")
B2 o-REFFHEI Mo M EHHBRETLE
Fig.2 Variation of the Mo adsorption rate on the
a-benzoin oxime column with respect to the concentration
of Nitric Acid
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Table 3 The Mo adsorption recovery rate varying with

the flow rate on the a-benzoin oxime column

5 WE/(mL-min) R @R R
1 0.5 98.6 97.5 96.1
2 1.0 98.9 95.6 94.6
3 1.5 99.2 93.2 92.4
4 2.0 99.3 85.9 85.3
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Fig.3 Variation curves of the a-benzoin oxime column

on Mo and impurities
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£ 1 mol/L B 7K fift W IR, 78 1y JLAfifk W 4K
B, Mo & B, JF EL I8 . Mo i
W WP AR ) Ce. St Te, 19524 .

R A 0 R, R A R T 0% B
7 Ji5 A 4 Mo Y [T 4 94.6%. it A 2% J5t Y
a-% B AFNGHEXS Mo Y IR 94.3%. I, Ce,
Sr, Te %5 2% A 0% ] 75 M5 A W BfF Mo TG 5% i,
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Kl 4,
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SRSt o T WO Mo B £ BUR
1 80.6%. THYHRIUR Ny 74.2%, DL 45 R F
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W TP S B Mo AT Ry 4R IR
342 Mo, I T 2A8UE AL WOl
JA 8 0.2 mol/L ISR 1R &, T &8 o-% B A7 5
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Fig.4 Variations in Molybdenum(Mo) content during

the desorption process in an alumina column
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Hoth 2 i S AR o TF A5 B8 o VR Uk
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99.0%. 1 UL IE P 2% X Mo ¥ O A WLAR A
HH S P R 50 R, XoF Mo JE A W2 A W I
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i, I ICP-MS W 5t 37 4 Ji¢ A 375 o8 Y R ik V%
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§F 3k 4,
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Table 4 Quantitative analysis of impurity concentrations

in the effluent from the activated carbon column

T JLR W ((ug' L)
1 U 2.81
2 Ce 0.03
3 Sr 1.31
4 Te 0.99
5 Zr 0.51
6 Ru 0.64
7 Cs 0.24

R 4T, 2R & mAHE | png/L, Bl
R TRC R & 5 2 LR XS

A=AN (1
m
N =Ny 2)
m=CV (3)
In2
= (4
2
In2CVN,
H (D~ (A A=A et 4

TR PRI BE, A S AR R, N O TR, m o
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Table 5 Comparative analysis of impurity content in the solution vs the standards of the European Pharmacopoeia

F5 JLE C/Cyo AlAowpe T 25 B BE SR

1 3y 1.47x10°* 6.60x10" <1x10”°

2 e 1.57x10°° 9.29x10™* -

3 %Sy 6.84x10° 1.97x10°® <6x1077
B27e 5.16x107° 3.33x107° <5x107°

5 7r 2.66x10° 1.19x10°° -

6 %Ry 3.34x10°° 9.54x10°° <5x107°

7 B 1.25x10° 2.26x107° -

8 Bl 1.56x10°° 1.56x10°7° <5x107°

2 5 A, IR Mo = v ERCR U
47 77 g 2% o A 5 ek mT DA 31 RACOH) 24 LA of

ZEA LA 2B, AT LA A AR il R A
PR ST, B S0 . o B2 B A& 5 A
FIE Pk B bE = A HR T Y 7 25, 6 Mo 9 & [ i
RIK 75.7%, %7 AL BRI A9 Mo 77 5 T 28 Y
5 R O 25 L AR DGR . R IIZ T Al 52

PR Ve b 1% R 5 W I P ] A7 25 428 36 Mk Mo 114
E.
4 Zig

AR5 2 B2 B A T AR VR R T A% A
T, BE AR A 253 06 238 Mo 43 B T 24
GEo KT A0 MR T ERIE A AL A -
U A 5 FE DA BT M e A i = AR R O =X, B
DISEE T Mo AT A $R I, 43 8 LA f Mo ) 4li
b o FE MG AR R A T, X ERE R
TR BAE . -2 JOFF G RE RIS 1k % KE B Mo 43 B
T L& AT T ek, B e T A e Al AR
I A IR0 2530 HE 19 Mo 43 88 T 5 441k (i F
6 e Sl 4SS U0 A% R V08, R 19 Mo 43 85 T
LA AT BRI, S2 56 45 R R Mo Y 8 [ ik
3K 75.7%, HA & AT G 47 2ok, X —
T EAMFC S0 T I Rk v i = [ A7
Z AR IR Mo B9 A 7 R, A B AR vk i 49k
LAY = A )67 R 30 3 Mo A $R R . 40 A4l
LT 2 A 2

2% k-
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