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Abstract: Oxygen is one of the essential elements in Earth's ecosystem, with stable isotopes
including §'°0, 5'’0, and §"0. The composition of oxygen stable isotopes (8’0, 5'°0) exhibits
different fractionation patterns in various biogeochemical reactions, making them useful as tracers
for biogeochemical cycles. The stable isotopes of dissolved oxygen (DO) in water bodies can be used
to trace water mass mixing and the source-sink balance of oxygen elements. Compared to "0, O
has a lower natural abundance and is highly susceptible to air interference during sample preparation
and mass spectrometry analysis. Currently, research on 870 is still quite limited. With the

continuous development of dual-inlet mass spectrometry technology, ''O can now be accurately
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measured, but the preparation process is time-consuming and labor-intensive. Continuous flow
injection mass spectrometry offers higher efficiency but suffers from reduced precision due to
unavoidable air interference. Combining the different fractionation patterns of 3'’0 and 'O (TOI)
in biological and chemical processes provides a new approach for estimating primary productivity in
water bodies, avoiding errors in traditional methods. Additionally, ancient atmospheres preserved in
ice cores can be used to infer paleoclimate evolution processes. The triple oxygen isotopes are
increasingly being recognized for their value in fields such as ecology, environmental science,
climatology, and marine science. This paper reviews the recent advancements in DO stable isotope
analysis techniques in water bodies, introduces the current research and developments of triple
oxygen isotopes in primary productivity estimation and paleoclimate evolution, and discusses future
directions and trends for triple oxygen isotopes.

Key words: dissolved oxygen; triple oxygen isotopes; continuous flow mass spectrometry; dual-inlet

mass spectrometry; primary productivity estimation
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Table 1 Comparison of the two sample injection methods
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Table 2 Selection of the value of 4 in marine studies
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