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Abstract: Stable isotopes are currently widely used in medical, biological, agricultural,
environmental, industrial manufacturing, scientific research and other fields. There are three isotopes
of silicon in nature, namely 234, 29Si, and *°Si, with natural abundances of 92.22%, 4.69%, and
3.09%, respectively. *si isotopes are mainly used in the semiconductor field and also have certain
applications in quantum computing and metrology. Silicon crystals made from pure %si isotope with
an abundance of over 99% have a perfect lattice structure, which can reduce phonon scattering,
improve thermal conductivity, lower gate voltage, increase switching speed, and increase chip
frequency. **Si can be used to manufacture high-speed CPUs, high-power devices, high-performance
sensors, and more. Different experimental studies have shown that using **Si materials with an
abundance of over 99.85% to prepare semiconductor components can increase their thermal
conductivity by 10%-60% compared to Si materials of natural abundance at room temperature. High

abundance *Si is a key material for preparing long spin coherent time devices in the field of quantum
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information, which can remove interference from *’Si. Silicon quantum bit is a promising quantum
computing platform with advantages such as long coherence time, small device size, and
compatibility with industrial manufacturing technology. In addition, s isotope can also be applied
in metrology to define the exact values of the Avogadro constant and kilogram units. With SiH, as
the medium, the separation of i isotope was studied by gas diffusion method in this paper. At
present, research on the separation of silicon isotopes using cryogenic distillation methods (SiH,,
SiCly, or SiH3;CH; systems), gas centrifugation methods (SiF; or SiHCls), chemical exchange
methods (systems of SiF, and different complexing agents), laser methods (Si,Fs, SiF,), and
electromagnetic methods (SiH,) has achieved certain results both domestically and internationally.
However, industrial production of silicon isotopes has not yet achieved breakthroughs. The cryogenic
distillation method for silicon isotopes has a smaller separation coefficient, while the gas
centrifugation method has a lower efficiency in separating light gases. The laser separation method
has a low yield and high cost, and its economic viability for industrial production is poor.
Nowadays, low-cost and high-quality polymer organic membranes have been widely applied in
industry. A high-speed maglev compressor used under negative pressure conditions can effectively
compress SiH, gas. Compared to other potential separation media, SiH, has a relatively small
molecular weight and a relatively large gas diffusion separation coefficient. The overall separation
factor of SiH, can reach 1.010 measured through a 4-stage diffusion cascade experiment. Using
multicomponent separation theory for cascade analysis and calculation, with natural SiH, as raw
material, the **Si isotope abundance in light fractions can be concentrated to over 99% through a
matched abundance ratio cascade (MARC) of no more than 300 stages. This study verifies the
feasibility of diffusion separation of *si isotope with SiH, as the medium.
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Table 1 The main physical parameters of SiH,
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Table 2 Saturated vapor pressure of monosilane (SiH,) at different temperatures
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Fig.1 Schematic diagram of the 4-stage diffusion cascade
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Table 4 Fluid parameters of diffusion separation of SiH, by the 4-stage cascade

TEHBHTESE  PHBUSESR  OPYRETE RgbRRE AREEAIUERE CERBESIIR SRR
/kPa /kPa FEL Mgs™ /C kW /W
5.6 1.1 5.2 3.0 454 1.03 1.61
6.7 1.3 52 3.6 48.5 1.14 1.77
8.4 1.6 53 4.4 51.9 1.29 2.15
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Table S Isotope abundance results of SiH, by ICP-MS after diffusion separation by the 4-stage cascade
WERESE RS *si ”si S AN ABEANTA  ARRNE MYUEARSE Rk
/kPa Jemy FBE £ FpE 5B F Ko Vi =E Y FHq FHvo F 8
R 9221%  467%  3.11%

5.6 Kkl 92.45% 4.59% 2.96% 1.0218 1.0190 1.0412 1.010 0.0051
R 92.06%  475%  3.19%

6.7 *ﬁ]’){q, 92.45% 4.58% 2.97% 1.0222 1.0177 1.0403 1.010 0.0050
R 92.07%  475%  3.18%

8.4 Kkl 92.40% 4.60% 3.01% 1.0179 1.0184 1.0366 1.009 0.0045
FEE 92.04%  475%  321%
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