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Abstract: Concerted nucleophilic aromatic (CSyAr) substitution reactions play an important role in
nuclear chemistry synthesis, and are now used to develop positron radiotracers. Compared with the
traditional nucleophilic aromatic substitution reaction, the advantages of this substitution reaction lie
in the fact that the range of substrates is not limited to electron-deficient aromatic compounds, and
the radiolabeled products can be easily separated from the reaction system. In this paper, the
mechanism of concerted nucleophilic aromatic substitution reaction was first elaborated, and the
CSyAr reaction mediated by 1,3-bis(2,6-diisopropylphenyl)2-chloroimidazolium chloride(SIPr-HCI)
and its application progress in the preparation of positron nuclide-labeled radiotracer were focused.

We emphasized the importance of concerted nucleophilic aromatic substitution reactions for
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synthesizing "F radiotracers, summarized existing shortcomings, and prospectd future application

prospects.
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Fig.1 Concerted nucleophilic aromatic substitution reaction mechanism
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Fig.6 Tris(acetonitrile)cyclopentadienylruthenium(II) hexafluorophosphate mediates 18F-deoxyfluorination of phenol
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