⁹⁹Tc^m 标记小干扰 RNA 探针的干扰活性及其在 荷瘤鼠体内的生物分布

康磊1,王荣福1,闫平1,张春丽1,刘萌1,徐小洁2

- (1. 北京大学 第一医院 核医学科, 北京 100034;
- 2. 军事医学科学院 生物工程研究所,北京 100850)

摘要:使用双功能螯合剂 NHS-MAG® 和氯化亚锡还原法构建⁹⁹Tc^m 标记的小干扰 RNA(Small Interference RNA,siRNA)探针。将标记和未标记的端粒逆转录酶(Human Telomerase Reverse Trancriptase,hTERT) 靶向 siRNA 转染至肝癌 HepG² 细胞,72 h 后,蛋白印迹法显示两者具有相近的蛋白抑制率(约 76.7%)。标记物在荷 HepG 肿瘤裸鼠体内的生物分布显示,肾脏分布最高,其次为肝脏。注射 hTERT 靶向探针后 $1\sim6$ h 内,肿瘤分布由 $(0.82\pm0.16)\%$ ID/g 增加至 $(0.97\pm0.15)\%$ ID/g,肿瘤与血液和肿瘤与肌肉的放射性摄取比(T/NT)分别为 2.62 ± 0.70 和 6.02 ± 0.52 ,显著高于对照组(P<0.05)。以上结果提示, 99 Tc^m-siRNA 探针对活体肿瘤示踪具有良好的研究前景和潜在的应用价值。

关键词: 99 Tcm;小干扰 RNA;干扰活性;生物分布

中图分类号, R817.4 文献标志码, A 文章编号, 1000-7512(2011)02-0065-07

In-vitro Inhibitory Activity and In-vivo Biodistribution of Tc^m Radiolabeled Small Interference RNA

KANG Lei 1 , WANG Rong-fu 1 , YAN Ping 1 , ZHANG Chun-li 1 , LIU Meng 1 , XU Xiao-jie 2

- (1. Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China;
- 2. Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100850, China)

Abstract: Small interference RNA (siRNA) was radiolabeled by using the bifunctional chelator of NHS-MAG³ and SnCl² • 2 H²O· After transfected into Hepatocarcinoma HepG² cells, labeled and unlabeled hTERT-targeted siRNA had the similar inhibitory rate about $^{76.7}\%$ measured by western blotting method. In the biodistribution study, the radioactive accumulation was primarily found in the kidneys, and then in liver. The radioactivity of hTERT-targeted siRNA in tumor increased from $(0.82\pm0.16)~\%$ ID/g to $(0.97\pm0.15)~\%$ ID/g from 1 to 6 hours after the administration. The uptake ratio of tumor to blood

收稿日期, 2010-12-30; **修回日期**, 2011-03-16

基金项目: 国家自然科学基金资助项目(30870729,30900374);国家重点基础研究发展计划("973"计划)资助项目(2006**CB**705705); 教育部教育振兴行场计划特殊专项四次八五四四程 同期状资助项目(4085254056)House. All rights reserved. http://www

作者简介: 康磊(1981-),男,内蒙古呼和浩特人,助理研究员(博士),肿瘤分子及临床核医学专业

通信作者: 王荣福,教授、博导,E-mail:rongfu_wang2002@yahoo.com.cn

and tumor to muscle were 2.62 ± 0.70 and 6.02 ± 0.52 , respectively, significantly higher than that of the control group $(P \le 0.05)$. These results indicated that ⁹⁹Tc^m radiolabeled hTERT targeted siRNA allows for prospective future and potential application value in the noninvasive visualization of tumor telomerase in vivo.

Key words: 99 Tcm; small interference RNA (siRNA); inhibitory activity; biodistribution

恶性肿瘤作为目前严重危害人类生命健康 和生存质量的疾病,一直被科学家广泛关注。端 粒酶是恶性肿瘤细胞区别于正常细胞的一种生 物标记物,其核心成分端粒逆转录酶(Human Telomerase Reverse Trancriptase, hTERT)是 端粒酶的限速亚单位,是细胞癌变的关键环 节[1]。随着 RNA 干扰技术的深入研究,针对 hTERT 基因的有效 RNA 干扰序列已被筛选出 来,为构建 hTERT 靶向的 RNA 探针奠定了基 础。已有研究[2]证实 hTERT 靶向的反义寡核 苷酸探针具备端粒酶体内显像的功能。类似于 反义显像技术,可将放射性核素标记的人工合成 小干扰 RNA (Small Interfevene RNA, siRNA) 技术引入体内, siRNA 的反义链与靶基因通过 碱基互补配对原则相结合,使用体外显像设备对 其体内的分布情况进行示踪。而且,利用放射性 核素对 siRNA 进行标记,不仅可以起到对标记 探针的示踪作用,还能够利用 siRNA 与基因的 特异性靶向结合的特性对靶向基因进行显像 研究。

本课题组之前使用 NHS-MAG³ 这一双功能螯合剂对 siRNA 进行⁹⁹Te^m 标记,获得了较理想的标记结果和体外稳定性^[3]。在此基础上,本研究拟选择 hTERT 这一肿瘤特征性基因作为靶点,制备⁹⁹Te^m 标记的 siRNA 探针,通过评价其对 hTERT 高表达的肿瘤细胞的体外干扰活性及体内生物分布,探讨 siRNA 标记探针在端粒酶内示踪的应用价值。

1 实验部分

1.1 主要仪器与装置

电子天平(FA1104):上海精科天平公司产品;恒压恒流器、蛋白电泳仪、湿性电转移仪:北京六一仪器厂产品;AXIMA-CFRplus 电离飞行质谱仪:英国 Kratos Analytical 公司产品;凝胶成像分析系统(AlphaImager-2200):美国 Alpha Innotech 公司产品;二氧化碳培养箱:美国 Thermo Electron 公司产品;暗盒:北京普利莱

基因技术有限公司产品;液氮罐、CO²罐:东亚公司产品;超净台:美国 Bio-Rad 公司产品。RM⁹⁰⁵放射性活度仪:中国计量科学研究院提供;FT-163放射免疫测量仪:国营 262 厂产品。

1.2 主要材料与试剂

实验组 siRNA 的靶点为hTERT mRNA 的第 3 119~3 137 位核苷酸 (19 bp),即 5′-TTTCATCAGCAAGTTTGGA-3′[4]。对照组 siRNA 以人类无关基因序列为靶点,即 5′-TTCTCCGAACGTGTCACGT-3′:由上海吉玛公司化学合成,2′-OMe 修饰,3′端连接 d(TT)基团,5′端连接 6 碳己基及伯胺结构。S-乙酰基-NHS-MAG3:纯度>99.9%,Hnatowich 教授 (University of Massachusetts Medical School) 惠赠。

兔抗人 TERT、β-tubulin 多克隆抗体:Santa Cruz 公司;辣根过氧化物酶标记的羊抗兔 IgG 抗体:北京中杉金桥生物技术公司;细胞转染试剂 Lipofectamine 2000、胎牛血清、高糖 DMEM:美国 Invitrogen 公司。新华一号试纸、常用分析纯化学试剂:北京化学试剂公司。⁹⁹ Mo-⁹⁹ Tc^m 发生器:原子高科股份有限公司产品。Sephadex G²⁵:美国 GE Amersham 公司产品。HepG² 肝癌细胞:美国 ATCC 中心提供。

1.3 动物模型

50 只雌性 BALB/c nu/nu 裸鼠,体重($20\pm$ 4) g,4 \sim 6 周龄,SPF 级别饲养:北京大学医学部实验动物中心。将处于对数生长期的 HepG2 细胞接种于裸鼠右侧腋下,SPF 条件下饲养20 d,肿瘤体积长至约 1 cm^3 进行动物实验。

2 实验方法

2.1 标记探针的制备

将反义链 RNA 与 NHS-MAG³ (N-hydrox-ysuccinimidyl Derivative of S-Acetyl Mercapto-acetyl riglycine, NHS-MAG³)混合振荡 1~2 h, http://v与正义链按摩尔比 1:1 退火杂交成 MAG³ 耦联的 siRNA 双链。在此 siRNA 双链中加入新

鲜的 $SnCl_2 \cdot ^2H_2O$ 及新鲜淋洗的 99 Tc^mO_4 液 进行标记。标记反应路线示于图 1。采用 Sephadex G25 对产品进行纯化。纸层析法分析其标 记率和放化纯度,新华一号试纸为固定相,丙酮 和生理盐水分别为展开剂。采用质谱法鉴定 MAG3-RNA的结构。

图 1 97Tcm 标记的 siRNA 反应路线

2.2 体外 hTERT 蛋白抑制实验

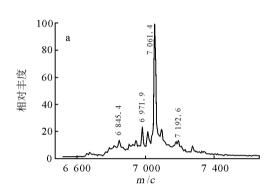
使用 Lipofectamine 2000 分别将染脂质体、 未标记和⁹⁹ Tc^m 标记的 siRNA 转染至 HepG² 细胞,72 h 后收集细胞。未转染肿瘤细胞作对 照。常规蛋白印迹(Western Blotting, WB)法鉴 定 hTERT 和 β-tubulin 的蛋白含量。将聚丙烯 酰胺(SDS)加入收集细胞中煮沸 15 min, 离心后 取上清液进行聚丙烯酰胺差示(SDS-PAGE)凝 胶电泳。继而电转移至硝酸纤维素膜上,使用 5%脱脂奶粉于4℃封闭过夜。此后用5%脱脂 奶粉稀释的批析在RT 和的Jubahlen批体室溫孵 lectrip 算各组织的百分注射剂量率 (% IDV g) 及肿瘤 育1h,洗膜3次,再孵育以体积比1:10000稀

释的辣根过氧化物酶耦联的羊抗兔 IgG, 洗膜后 用化学发光法显色 5 min, 压片显影。

2.3 荷瘤鼠体内的生物分布

50 只荷 HepG2 瘤裸鼠随机均分为两组,每 组分别注射⁹⁹ Tc^m 标记的实验组探针和对照组 探针。每只裸鼠尾静脉注射 200 PL (1.85 MBq)⁹⁹Tc^m-siRNA。分别于注射后 0.5、 1、2、4、6 h 摘眼采血 100 PL。脱颈处死后,取心 脏、肝脏、脾脏、肺脏、肾脏、胃、小肠、膀胱、骨骼 肌、小腿长骨、肿瘤,称重并测定其放射性计数,

与非肿瘤放射性摄取比(T/NT)。


2.4 统计学分析

各变量均使用 $\bar{\mathbf{x}} \pm s$ 表示。方差分析 ANO-VA 法进行数据统计。P 值小于 0.05 认为具有统计学差异。

3 结果与讨论

3.1 ⁹⁹Tc^m-siRNA 的制备

NHS-MAG³ 的耦联产物经质谱鉴定,鉴定结果示于图 2 。耦联前 RNA 的相对分子质量为 7 061. 4, 耦联后 MAG³-RNA 的相对分子质量 为 7 307. 1, 螯合前后的相对分子质量之差与理论值相符,证实 RNA 分子与 NHS-MAG³ 的耦

联成功。

NHS-MAG³ 耦联的 siRNA 双链与⁹⁹ Tc^m 在室温下反应 1 h 可得⁹⁹ Tc^m 标记的 siRNA。反应产物中含有三种物质:游离锝(未被亚锡离子还原的⁹⁹ Tc^m O4⁻)、水解锝(⁹⁹ Tc^m O2 • nH2O)和⁹⁹ Tc^m-siRNA。使用丙酮作展开剂时,游离锝的 R_f 为 $0.9 \sim 1.0$,水解锝和络合锝的 R_f 为 $0 \sim 0.1$;使用生理盐水作展开剂时,水解锝的 R_f 为 $0 \sim 0.1$,游离锝和络合锝的 R_f 为 $0.8 \sim 1.0$ 。经计算得到: ⁹⁹ Tc^m-siRNA的标记率大于 73%,放化纯度大于 92%,比活度达 1.85 TBq/g。

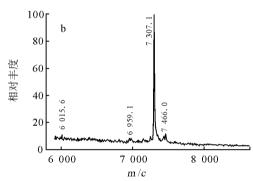
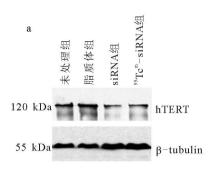


图 2 RNA 相对分子质量质谱分析

a---耦联前;b---耦联后

3.2 hTERT 蛋白抑制实验


蛋白印迹法比较未转染肿瘤细胞、转染脂质体肿瘤细胞、转染未标记实验组 siRNA 肿瘤细胞和转染实验组 99 Tc^m-siRNA 肿瘤细胞的hTERT 蛋白表达水平。hTERT 蛋白抑制实验示于图 3 。由图 3 结果计算可知,hTERT 靶向的实验组 siRNA 对hTERT 蛋白表达具有显著的抑制效果,以 6 tubulin 管家蛋白为参照,转染未标记实验组 siRNA 的肿瘤细胞中蛋白抑制率为(76 . 32 \pm 3 . 43)%,转染实验组 99 Tc^m-siRNA的肿瘤细胞中蛋白抑制率为(76 . 78 \pm 2 . 95)%,二者无统计学差异(12) 12 0. 13 0. 与未转染和仅转染脂质体的肿瘤细胞相比,转染实验组 99 Tc^m-siRNA的细胞其蛋白表达量的平均抑制率为 12 0. 12 0. 13 0.

蛋白抑制结果显示, siRNA 探针在耦联 NHS-MAG3 和标记⁹⁹Tc^m 后的干扰活性无明显 改变,说明 siRNA2反义链点 海遙接的亦碳已 基、氨基、MAG3 基团的耦联及⁹⁹Tc^m 的标记未 影响 siRNA 分子的干扰活性以及靶向结合能力。这可能由于采用 2'-OMe 修饰 siRNA 能够提高其核酸酶抵抗力,并降低激发免疫反应、脱靶效应的可能性^[5], NHS-MAG³ 基团的相对分子质量小、结构简单,对标记分子的空间构型、结合区域、活性位点的影响小,保证了探针的生物活性^[6]。

3.3 生物分布

⁹⁹Tc^m 标记的实验组 siRNA 和对照组 siR-NA 在各组织的放射性分布结果分别列于表 1 和表 2。对比表 1 和表 2 可知, 两种探针在肾脏的放射性摄取在各时间点均为最高, 其次为肝脏。血液的放射性分布在注射后初始较高, 但是随着时间延长而迅速下降, 在 6 h 时最低。血供丰富的脏器(例如心脏、肺脏、脾脏和骨髓)其放射性分布情况与血液类似, 均随时间延长而持续降低。胃肠系统包括胃和小肠的放射性分布均

改变,说明》和RMA2反义链项 冷端连接的nn碳巴lectr不高Publishing House. All rights reserved. http://www 基 氨基 MAC。基团的耦联及⁹⁹To^m 的标记去

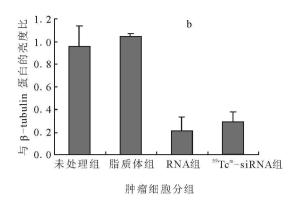


图 3 各组细胞的 hTERT 蛋白表达

a——各组细胞的 hTERT 和 β -tubulin 蛋白表达结果; b——hTERT 与 β -tubulin 蛋白的条带亮度比

表 1 99 Tc^m 标记的实验组 siRNA 在荷 HepG2 瘤裸鼠体内生物分布($\bar{x} \pm s, n=5$)

Manager of Figure 1 and Figure 1 and							
组织或 _	放射性摄取率 $/(\% ext{ID} \cdot ext{g}^{-1})$						
器官	0.5 h	1 h	2 h	4 h	6 h		
心脏	0.76 ± 0.10	0.43 ± 0.05	0.41 ± 0.14	0.38 ± 0.10	0.32 ± 0.06		
肝脏	7.68 ± 0.84	3.08 ± 0.32	1.63 ± 0.38	1.56 ± 0.12	0.99 ± 0.05		
脾脏	0.78 ± 0.15	0.50 ± 0.11	0.41 ± 0.07	0.36 ± 0.05	0.25 ± 0.08		
肺脏	1.36 ± 0.09	1.03 ± 0.23	0.98 ± 0.10	0.96 ± 0.08	0.65 ± 0.15		
肾脏	9.31 ± 2.68	5.80 ± 2.80	4.47 ± 0.85	2.72 ± 0.63	1.99 ± 0.59		
胃	3.06 ± 0.84	1.66 ± 0.10	1.44 ± 0.40	1.24 ± 0.27	1.20 ± 0.35		
小肠	4.20 ± 1.93	2.77 ± 0.76	2.10 ± 1.24	0.95 ± 0.41	0.64 ± 0.07		
膀胱	2.60 ± 0.78	2.08 ± 0.33	2.39 ± 0.41	3.42 ± 2.30	3.56 ± 0.49		
骨骼肌	0.61 ± 0.15	0.31 ± 0.04	0.58 ± 0.49	0.22 ± 0.05	0.17 ± 0.01		
长骨	1.06 ± 0.21	0.59 ± 0.06	0.39 ± 0.19	0.19 ± 0.05	0.10 ± 0.03		
血液	0.88 ± 0.14	0.52 ± 0.03	0.44 ± 0.06	0.43 ± 0.08	0.40 ± 0.06		
肿瘤	1.08 ± 0.07	0.82 ± 0.16	0.71 ± 0.14	0.74 ± 0.15	0.97 ± 0.15		

表 2 99 Tc^m 标记的对照组 siRNA 在荷 HepG2 瘤裸鼠体内生物分布($\bar{x} \pm s, n=5$)

组织或 _		放射性摄取率 $/(\% ID \cdot g^{-1})$						
器官	0.5 h	1 h	2 h	4 h	6 h			
心脏	0.68 ± 0.37	0.34 ± 0.09	0.27 ± 0.07	0.16 ± 0.02	0.18 ± 0.05			
肝脏	4.22 ± 0.94	2.20 ± 0.92	1.27 ± 0.32	0.88 ± 0.12	0.49 ± 0.15			
脾脏	1.68 ± 0.66	0.51 ± 0.23	$\textbf{0.38} \pm \textbf{0.12}$	0.27 ± 0.04	0.13 ± 0.08			
肺脏	1.13 ± 0.44	0.76 ± 0.10	0.48 ± 0.13	0.23 ± 0.08	0.22 ± 0.04			
肾脏	10.17 ± 3.86	8.20 ± 1.61	5.74 ± 1.90	2.14 ± 0.86	1.85 ± 0.58			
胃	0.87 ± 0.35	2.21 ± 0.72	1.41 ± 0.50	0.86 ± 0.24	$\textbf{0.52} \pm \textbf{0.21}$			
小肠	1.66 ± 0.72	0.80 ± 0.05	0.41 ± 0.13	0.25 ± 0.04	$\textbf{0.23}\pm\textbf{0.02}$			
膀胱	2.83 ± 0.78	1.77 ± 0.76	0.32 ± 0.09	0.22 ± 0.11	0.28 ± 0.17			
骨骼肌	1.18 ± 0.36	0.31 ± 0.07	$\textbf{0.21} \pm \textbf{0.08}$	0.11 ± 0.04	0.08 ± 0.02			
长骨	1.01 ± 0.71	0.35 ± 0.03	0.24 ± 0.04	0.19 ± 0.00	0.14 ± 0.05			
血液	2.55 ± 0.81	0.93 ± 0.36	0.56 ± 0.17	0.33 ± 0.02	0.33 ± 0.14			
曲扇 (01 1 h 88 ±00 0501 ·	4 0 66 ± 0 1 ₁ 9	1 -0 43 + 0 09 11	1. · . 0 . 27 . ± . 0 . 04 . 11 ·	1 . 0 16 ± 0 06 1			

肿瘤 (C)1998-2029 China Alasteria Bournal Electronic Publishing Protise 9All rights reserved http://www

由表 1 可见,注射⁹⁹ Tc^m 标记的实验组 siR-NA 探针后,肿瘤的放射性分布在 0.5 h 时低于血液和其他脏器。但在 1 h 后,肿瘤的放射性分布随时间延长而逐渐增加,由(0.82 ± 0.16)% ID/g 增加至(0.97 ± 0.15)%ID/g。相比之下,血供丰富的脏器其放射性分布均随时间延长不断降低,特别是血液的分布降低较快。可见,实验组 siRNA 在肿瘤部位的滞留保持稳定的水平。注射后 0.5 h 左右,放射性探针的生物分布主要反映的是在血池相的分布,属于非特异性,因而血液及供血丰富的脏器其放射性分布较高。随着时间延长,血液中的标记探针逐渐与肿瘤靶点结合,导致探针在肿瘤的分布逐渐增加,而在其他脏器逐渐降低。

由表 2 可见,注射⁹⁹ T c^m 标记的对照组 si R-NA 后,肿瘤的放射性分布随时间延长而不断降低,0.5 h 时为(1.88 ± 0.05)%I D/g,到 6 h 时仅为(0.16 ± 0.06)%I D/g。其他脏器的放射

性分布也呈现下降趋势,可见对照 siRNA 在肿瘤中的分布和其他脏器的分布相近,无明显特异性。

对比实验组和对照组可知,两探针在肿瘤部位的放射性分布存在显著性差异(P < 0.05)。实验组在肿瘤部位的分布不断增加,而对照组不断降低。以上结果提示,hTERT 靶向的 siRNA 在肿瘤靶向浓聚的特异性。

实验组和对照组 T/NT 分别列于表 3 和表 4。表 3 和表 4 显示,除肝脏、肺脏、小肠骨骼肌外,实验组和对照组探针在其他组织的 T/NT 6 h内均有显著性差异(P < 0.05)。在注射实验组探针后第 6 h 时,所有脏器的 T/NT 均显著高于对照组(P < 0.05),其肿瘤与血液和肿瘤与骨骼肌的 T/NT 分别为 2.62 ± 0.70 和 6.02 ± 0.52 ,相比之下,对照组的肿瘤与血液的 T/NT 在注射后各时间点均未超过 1.00。

表 3 ⁹⁹ T	ˈcʰ 标记的实验组 siRNA	注射后 6 h 内的 T.	$/NT(\bar{x}\pm_{s}, n=5)$
---------------------	------------------	---------------	----------------------------

加加士服会	$_{ m T/NT}$					
组织或器官 -	30 min	1 h	2 h	4 h	6 h	
肿瘤与心脏	1.44 ± 0.13	1.46±0.09	1.71 ± 0.59	1.77±0.45	3.29±0.64	
肿瘤与肝脏	0.14 ± 0.01	0.20 ± 0.03	0.40 ± 0.12	0.48 ± 0.10	1.04 ± 0.22	
肿瘤与脾脏	1.44 ± 0.26	1.31 ± 0.23	1.56 ± 0.47	$1.67 \pm \pm 0.53$	4.69 ± 1.46	
肿瘤与肺脏	0.79 ± 0.03	0.71 ± 0.14	0.62 ± 0.07	0.79 ± 0.22	1.63 ± 0.32	
肿瘤与肾脏	0.13 ± 0.03	0.16 ± 0.09	0.14 ± 0.01	0.29 ± 0.10	0.57 ± 0.17	
肿瘤与胃	0.37 ± 0.07	0.37 ± 0.01	0.43 ± 0.03	0.63 ± 0.16	0.94 ± 0.28	
肿瘤与小肠	0.40 ± 0.24	0.24 ± 0.06	0.42 ± 0.20	0.98 ± 0.46	1.65 ± 0.45	
肿瘤与膀胱	0.46 ± 0.12	0.30 ± 0.02	0.27 ± 0.08	0.22 ± 0.18	0.39 ± 0.04	
肿瘤与骨骼肌	1.95 ± 0.51	2.01 ± 0.17	1.76 ± 0.76	3.68 ± 0.92	6.02 ± 0.52	
肿瘤与长骨	1.07 ± 0.22	1.06 ± 0.04	3.23 ± 2.02	7.25 ± 0.30	11.88 ± 2.55	
肿瘤与血液	1.24 ± 0.11	1.20 ± 0.09	1.39 ± 0.24	1.78 ± 0.20	2.62 ± 0.70	

表 4 99 Tc^m 标记的对照组 siRNA 注射后 6 h 内的 T/NT $(\bar{x}\pm s, n=5)$

加州平明 宁	T/NT					
组织或器官	30 min	1 h	2 h	4 h	6 h	
肿瘤与心脏	0.73 ± 0.27	1.97 ± 0.24	1.60 ± 0.10	1.74 ± 0.35	1.08±0.66	
肿瘤与肝脏	0.16 ± 0.06	0.34 ± 0.09	0.35 ± 0.07	0.31 ± 0.03	0.38 ± 0.21	
肿瘤与脾脏	0.34 ± 0.29	1.61 ± 0.79	1.22 ± 0.24	1.01 ± 0.16	1.85 ± 0.95	
肿瘤与肺脏	0.34 ± 0.26	0.93 ± 0.42	0.93 ± 0.09	1.43 ± 0.63	0.80 ± 0.43	
肿瘤与肾脏	0.11 ± 0.07	0.08 ± 0.02	0.08 ± 0.02	0.16 ± 0.08	0.09 ± 0.03	
肿瘤与胃	0.53 ± 0.22	0.33 ± 0.11	0.35 ± 0.08	0.35 ± 0.14	0.38 ± 0.21	
肿瘤与小肠	0.69 ± 0.39	0.85 ± 0.31	1.12 ± 0.18	1.13 ± 0.21	0.72 ± 0.30	
肿瘤与膀胱	0.61 ± 0.39	0.55 ± 0.39	1.41 ± 0.14	1.43 ± 0.35	0.83 ± 0.42	
肿瘤与骨骼肌	1.52 ± 0.93	2.55 ± 0.67	2.52 ± 0.88	2.82 ± 0.78	2.21 ± 1.19	
肿瘤与长骨94-2	2021 30±0,86 cad	emi 2.53±0,73 Ele	ctro2:i59#1b22shin	ig H ouse. A40 righ	nts reserved.4 http	
肿瘤与血液	0.20 ± 0.01	0.78 ± 0.21	0.83 ± 0.17	0.95±0.10	0.59 ± 0.34	

http://www

以上结果提示,⁹⁹Tc^m标记的实验组 siRNA 探针在体内十分稳定,且在肿瘤部位显示出浓聚效果,其清除速率比血液清除慢,使得肿瘤的靶本底增加,说明 siRNA 探针具有在体内特异性靶向结合的能力。

作为小分子水溶性探针,siRNA 在肾脏、尿液的分布较高,可能是由于肾脏近曲小管对核酸分子强烈的重吸收作用而导致^[7]。肾脏的清除速度较肝脏快,迅速降低本底以提高探针的靶与本底的放射性之比,有利于靶向示踪,特别是靶向显像,但这同时限制了核酸探针在泌尿系统或肝脏肿瘤的示踪应用。随着显像时间延长,肝、肾的放射性分布逐渐减低,而肿瘤的放射性相对稳定,从而提高了肿瘤与非肿瘤部位的放射性摄取比。因此,双时相或者延迟采集法可以提高靶与本底的放射性之比^[8]。

4 结 论

本研究通过体外基因干扰活性和体内生物分布实验,证明⁹⁹Tc^m标记的siRNA探针在体外和体内均具备与靶向基因结合的特性。⁹⁹Tc^m标记实验组siRNA探针不仅能够与活体hTERT表达阳性的肿瘤特异性地结合,而且可以对siR-NA探针的体内分布进行实时、无创、动态的示踪。因此,⁹⁹Tc^m标记的siRNA探针对活体肿瘤示踪具有良好的研究前景和潜在的应用价值。

致谢:感谢 Hnatowich 教授赠与 NHS-MAG3。

参考文献:

- [1] 康磊, 王荣福. 人端粒酶逆转录酶在肿瘤靶向分子显像中的研究进展 [J]. 中华核医学杂志, 2010, 34(1): 68-71.
- [2] Liu M, Wang RF, Zhang CL, et al. Noninvasive imaging of human telomerase reverse transcriptase (hTERT) messenger RNA with ⁹⁹Tc^m-radiolabeled antisense probes in malignant tumors [J]. J Nucl Med, 2007, 48(12): 2 028-2 036.
- [3] 康磊,王荣福,闫平,等.⁹⁹Tc^m 标记的小干扰 RNA 探针的制备及稳定性评价[J].核化学与放 射化学,2010,32(6),348-353.
- [4] Masutomi K, Yu EY, Khurts S, et al. Telomerase maintains telomere structure in normal human cells [J]. Cell, 2003, 114(2): 241-253.
- [5] Bramsen JB, Laursen MB, Nielsen AF, et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity [J]. Nucleic Acids Res, 2009, 37(9): 2 867-2 881.
- [6] 刘萌,王荣福·S-乙酰基-NHS-MAG3 在反义显像 研究中的应用及进展[J]. 同位素,2004,17(3): 164-168.
- [7] van de Water FM, Boerman OC, Wouterse AC, et al. Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules [J]. Drug Metab Dispos, 2006, 34(8): 1 393-1 397.
- [8] McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice [J]. Nature, 2002, 418 (6 893): 38-39.