四极质谱计测量天然水平氘氢丰度比

李雪松,张子斌,韦冠一,张海涛,翟利华 (西北核技术研究所,陕西西安 710024)

摘要:自制了高温铬还原制氢装置;探索了降低复合氢离子 H³⁺对氘化氢离子 HD⁺干扰的方法。以氘丰度 为天然水平的国家一级标准水样中的两个样品作为标准,另外两个样品作为测试样品,在 GAM400 四极质 谱计上探索了等氢分子离子 H²⁺线性校正测量值的方法。利用双标准外标氘氢丰度比差值校准系数的方 法对两个标准水样进行了测量,结果与国家标准值偏差为±0.1%,最终评估测量相对不确定度为0.8%。 关键词:四极质谱;氘氢丰度比;天然水平;标准水样 **中图分类号:**0657.63 **文献标识码:A 文章编号:**1000-7512(2007)03-0129-06

Measurement of Natural Level Ratio of D and H by Quadrupole Mass Spectrometer

LI Xue-song, ZHANG Zi-bin, WEI Guan-yi, ZHANG Hai-tao, ZHAI Li-hua (Northwest Institute of Nuclear Technology, Xi'an 710613, China)

Abstract: A device with high temperature Cr inside is made to reduce water to hydrogen. The method for reducing the interferer of ${\rm H_3}^+$ to ${\rm HD}^+$ is discussed. Two samples of a set of national standard water samples which have natural level ratio of D and H are set as standards and the other two as unknown samples, a linear calibration method with equal ${\rm H_2}^+$ is studied on GAM400 quadrupole mass spectrometer. the difference calibrated coefficient of the ratio of D and H is obtained between two standards. The other two standard water samples are measured based on the methods and the coefficient. The measured results have $\pm 0.1\%$ bias to national standard values. And the evaluated relative uncertainty is 0.8%. Key words: quadrupole mass spectrometer; ratio of D and H; natural level; standard water

氢同位素分析技术广泛应用于农业、生物、 医学、岩矿分析和军事等领域。氘氢丰度比的测 量方法主要有质谱法^[1]、密度计法和落滴法^[2]、 红外光谱法^[3]、气相色谱法^[4-5]等。化学反应界 面质谱法是近年来发展起来的新方法,该技术尚 处于应用初级阶段^[6]。国际上普遍采用质谱法 对天然水平的氘氢丰度比进行准确分析^[7-8],所 采用的仪器主要分为两种:第一种是高分辨率磁 质谱计,能够分辨 H_3^+ 和 HD^+ ,如 MAT-271 磁 质谱计;第二种是配备能有效抑制 H_3^+ 的特殊 离子源磁质谱计,如 MAT-253 磁质谱计。在国 内,北京大学化学系稳定同位素实验室和中国科

学院气体地球化学重点实验室均使用磁质谱计 在低分辨率下分析天然水平氘氢丰度比,前者采 用 MAT-86 磁质谱计进行测量,以双样比较法 处理数据,得到 \pm 0.5%测量不确定度^[9],后者采 用 MAT-271 磁质谱计的低分辨通道(分辨率为 220)进行测量,以线性拟合法处理数据得到 1.63%的测量不确定度^[10]。中国工程物理研究 院核物理与化学研究所曾使用四极质谱计对氘 丰度较高的样品(氘丰度大于 10%)进行分 析^[11]。本实验拟使用的 GAM400 型四极质谱 计的分辨率达不到分辨 H³⁺和 HD⁺的水平,在 实验中欲利用等 H²⁺线性校正测量值和双标准 外标氘氢丰度比差值校准系数的方法测量天然 水平氘氢丰度比。

1 实验材料

仪器型号及使用环境温度:GAM400型四极质谱计,德国IPI公司制造,(28±0.4)℃。

实验水样:国家一级标准水样一套四个,编 号为 GBW04401~GBW04404^[12]。D 丰度分别 为 1.557×10⁻⁴、1.457×10⁻⁴、1.263×10⁻⁴、 金属还原剂及使用条件:德国进口 Cr,反应 温度为(800±2) ℃。

2 实验方法、结果及讨论

2.1 样品制备

由于气相氢长期保存不稳定,所以待分析样 品一般为水样。在测量前需将水样转化为气相 氢,再将气相氢引入四极质谱计进行测量。实验 室中,利用高温金属还原水制氢的方法比较成 熟。到目前,国内外历史上使用的制氢金属基本 有铀、锌^[14]、镁^[15-16]、铬4种。铬还原法是最新 发展起来的方法,该方法反应平衡性好,速度快, 记忆效应小,反应温度为700~830℃,不需要任 何附加方法和环节,是目前国际上采用的主流方 法。本实验使用铬还原法制备样品,制备流程示 于图 1。

将水样由微量进样器快速注入真空系统,使 水蒸气经过 800 ℃的 U 型铬粉管道,生成的气 相氢直接引入四极质谱计的进样系统。

图 1 高温铬还原水样制氢流程

2.2 实验条件

进样方法:采用 U 型石英管与四极质谱计 进样系统串联,控制压强定体积进样,定压进样 时压强控制波动幅度为±1%。

2.3 降低 H₃⁺对 HD⁺的干扰

天然水中 D 的丰度在 10^{-4} 量级, 主要以 HD 的形式存在, 以 D₂ 存在的概率仅为 10^{-8} , (C) 1994-2021 China Academic Journal Ele 因此 氘 氢 丰度 比 可 近 似 表 达 为 ([HD⁺]/ [H₂⁺])/2, 可见准确测量 HD⁺和 H₂⁺的离子流 之比可以推导出实际氘氢丰度比。对于低分辨 质谱计, HD⁺ 的质谱峰上存在 H₃⁺ 和³ He⁺ 干 扰。本实验采用水样制氢, 氢纯度>99%, 空气 中的 He 摩尔含量为 10^{-6} 量级, ³ He 的同位素丰 度为 10^{-4} 量级, 因此所制备样品中的³ He 含量 在 10^{-12} 量级, 可见³ He⁺ 的干扰可忽略。影响 H₃⁺ 形成的因素主要有两个:轰击电子的能量和 ronic Publishing House. All rights reserved. H² 分子的密度。氢原子的结合能为 4.72 eV, 氢原子电离能为 13.6 eV, 氢分子的电离能为 15.4 eV^[17],所以氢分子共价键很容易被拆开形 成氢原子 H,再经过电子轰击形成 H⁺,吸附 H₂ 分子后形成 H_3^+ 。或者 H_2^+ 与 H 原子结合形 成 H_3^+ 。因此降低电子轰击能量可以降低 H^+ 的生成几率,从而降低 H_3^+ 的形成概率;在同样 电子数量和轰击能量情况下,取消电子准直磁 铁,降低电子密度,如此牺牲了部分灵敏度,但可 以显著降低 H₃⁺的干扰,实践证明可降低一个 量级;另外,H₂分子的密度越大,形成H₃⁺的概 率越大,所以必须降低进样压强。在实施以上三 种措施的同时,必须满足信噪比条件。实验中, 选定电子轰击能量为 30 eV, 进样压强为 200 Pa

2.4 数据处理

相关量定义。 $I_{[H_2^+]}$ 为 H_2^+ 离子流强度; *I*_{[HD}⁺1为 HD⁺离子流强度; *I*_{[H3}⁺1为 H3⁺离子流 强度; $R_{[HD^+]/[H_2^+]}$ 为 HD⁺离子流强度与 H²⁺离 子流强度之比; $R_{[H_3^+]/[H_2^+]}$ 为 H_3^+ 离子流强度 与 H_2^+ 离子流强度之比; $R_{[M^3/M^2]}$ 为质量数 3 与 质量数2上的峰强之比; R[D/H] 为实际氘氢之比; K 为线性校正斜率; $K_{\text{[D/H]}}$ 为氘氢丰度比差值校 正系数。

实验中使用四极质谱计测量所制备的气相 氢的 R_[M³/M²], 然后采用以下数据处理方法得到 样品的 R[D/H]。

2.4.1 等 H₂⁺线性校正测量值 采用 2.3 节 中描述的降干扰方法后,在 HD⁺ 的质谱峰上仍 然存在高出 HD⁺约³倍的 H³⁺干扰,如何准确 扣除这部分干扰是关键。文献[9]在 M-86 质谱 计上采用双样比较法成功测量了我国珠峰高海 拔地区冰雪水中氢同位素组成。该方法利用等 量的 H_2^+ 产生的等量的 H_3^+ 这一原理来扣除 H₃⁺的干扰,但在实际应用过程中存在一个困 $_{,}$ 即如何在多次进样测量中保持等量的 ${\rm H_2}^+$ 。 如果这一关键的等量参数不能实现,就会引入进 样偏差。文献[9]未对该偏差的校正作具体描 述。文献[10]指出,采用低分辨通道测量 D 丰 度时,虽然受到 H_{3}^{+} 的干扰,但理论上, $R_{[H_3^+]/[H_2^+]}$ 与 H_2^+ 离子数成正比, $R_{[HD^+]/[H_2^+]}$ 是一个恒定值,与H2⁺无关,因此可以根据该正 比关系对测量值进行等 H_2^+ 线性校正。

$$R_{[M3/M2]} = R_{[HD^+]/[H2^+]} + R_{[H3^+]/[H2^+]}$$

 $=R_{[HD^+]/[H2^+]}+KI_{[H2^+]}$ (1)(1)式中 K 为斜率。同样测量条件下,不同 的样品有不同的 $R_{[HD^+]/[H2^+]}$ 和相同的斜率 K_{\circ}

只要对一个样品进行不同压强进样测量,对所得 数据进行线性拟合即可获得 K。实验中采用 GBW04401 号标准水共测量 8 次, 对测量数据 进行的线性拟合结果示于图 2。

图 2 GBW04401 号标准水 8 次测量值线性拟合

 $R_{[M^{3}/M^{2}]}$ 与[H²⁺]的拟合相关系数 R^{2} = 0.999 92,可见存在线性关系,线性拟合的斜率 $K=1.533\ 2\times 10^{6}$ 。记选定的用于校正的目标 H_2^+ 离子流强度为 $I_{[H_2^+]c}$,实测 H_2^+ 离子流强 度为 *I*_{[H2}+1,则按照 *I*_{[H2}+1c 校正后的峰强之比 *R*[M3/M2]c可计算为

$$R_{[M^{3/M^{2}}]c} = R_{[M^{3/M^{2}}]} +$$

 $K \bullet (I_{[H_2^+]C} - I_{[H_2^+]})$ (2)

式(2)可将多次测量中因进样不等造成 H_2^+ 的微小偏差校正到同一 H_2^+ 离子流强度 I_{[H2}+_{lc}, I_{[H2}+_{lc}最好选定在拟合直线上有效测量 数据最密集的部分,这样可以减小误差。 GBW04401 号标准水 6 次测量数据的线性校正 结果列于表 1。由表 1 可知选取 $I_{[H_2^+]c} = 5.69$ $\times 10^{-10}$ A 为 H₂⁺的离子流强度。

2.4.2 双标准外标氘氢丰度比差值校正系数 对两个已知氘氢丰度比的标准水样1和2,分别 测量 R_[M3/M2],使用式(2)进行校正。校正后的差 值与实际氘氢丰度比差值之间存在系数 K[D/H] 的关系,由式(3)表示:

$$K_{[D/H]} = \frac{R_{[D/H]B1} - R_{[D/H]B2}}{R_{[M^{3/M2}]B^{1}C} - R_{[M^{3/M2}]B^{2}C}}$$
(3)

和

分别以标准水样 GBW04401 测量中时质量数2引与质量数。是的峰强之地Electrengiw的中的机管型Web和11gh和resegew04404;//www *R*[M³/M²]可表示为: GBW04402 和 GBW04404 为双标准测量差值校

正系数 K_[D/H],6 次测量的数据列于表 2。表 2 数据表明,对于同一仪器在相同测量条件下,用 外标法测量的氘氢丰度比差值校正系数是一个 恒定值,该值可用于氘氢丰度比差值校正。

2.4.3 样品测量 对于式(3),任何两个样品均 成立。记待测样品的实际氘氢丰度比为 *R*_{[D/H]s}, 则待测样品与任何一个标样构成样品对均能满 足式(3),则有:

$$K_{\rm [D/H]} = \frac{R_{\rm [D/H]B1} - R_{\rm [D/H]S}}{R_{\rm [M^{3}/M^{2}]B^{1}C} - R_{\rm [M^{3}/M^{2}]SC}}$$
(4)

变换式(4)得到待测样品的氘氢丰度比 *R*[D/H]s的最终计算式:

 $R_{\rm [D/H]s} = R_{\rm [D/H]B^1} - K_{\rm [D/H]} (R_{\rm [M^3/M^2]B^{1c}} - R_{\rm [M^3/M^2]sc})$ (5)

以 GBW⁰⁴⁴⁰⁴ 号标准水样为标准,以 GBW⁰⁴⁴⁰²和 GBW⁰⁴⁴⁰³ 号标准水样为待测样 品。各测量数据和校正数据列于表³。数据校 正到 $I_{\text{H2}^+\text{IC}} = 5.69 \times 10^{-10}$ A。

	1X - 0		。			
测量编号	进样压强/Pa	$I_{[\mathrm{H}_2}^+]/\mathrm{A}$	<i>R</i> [M ³ /M ²]	$I_{[\mathrm{H}_2^+]\mathrm{C}}/\mathrm{A}$	<i>R</i> [M ³ /M ²]C	
1	199	$5.675 \ 9 imes 10^{-5}$	$1.296\ 5{ imes}10^{-3}$	$5.69 imes 10^{-5}$	$1.298~7 \times 10^{-3}$	
2	200	$5.685 \ 9 imes 10^{-5}$	$1.295 \ 9 \times 10^{-3}$	$5.69 imes 10^{-5}$	$1.296\ 5{ imes}10^{-3}$	
3	200	$5.684 \ 9 imes 10^{-5}$	$1.298\ 1{ imes}10^{-3}$	$5.69 imes 10^{-5}$	$1.298 \ 9 \times 10^{-3}$	
4	200	$5.682 \ 8 imes 10^{-5}$	$1.298\ 4{ imes}10^{-3}$	$5.69 imes 10^{-5}$	$1.299\ 5{ imes}10^{-3}$	
5	201	$5.693 \ 8 imes 10^{-5}$	$1.298\ 3 imes 10^{-3}$	$5.69 imes 10^{-5}$	$1.297\ 7{ imes}10^{-3}$	
6	198	$5.618\ 0 imes 10^{-5}$	$1.285\ 4{ imes}10^{-3}$	$5.69 imes 10^{-5}$	$1.296\ 4{ imes}10^{-3}$	
平均值					$1.298\ 0 imes 10^{-3}$	
相对标准偏差	0.1%					

表 1 GBW04401 号标准水 6 次测量的数据及线性校正

表 2 双标准外标氘氢丰度比差值校正系数 K[D/H]

标准2和标准1	双标准测量校正值之差	双标准实际氘氢丰度比之差	差值校正系数 K[D/H]
CPW (04401 € ⊓ CPW (04403	4.92×10^{-5}	2.94×10^{-5}	0.598
GDW 04401 Vh GDW 04403	5.07×10^{-5}	$2.94 imes 10^{-5}$	0.580
GBW 04401 和 GBW 04404	1.132×10^{-4}	6.67×10^{-5}	0.589
	1.139×10^{-4}	6.67×10^{-5}	0.586
ODW/04402 # ODW/04404	$9.66 imes 10^{-5}$	5.67×10^{-5}	0.587
GBW 04407 ¥h GBW 04404	9.62×10^{-5}	5.67×10^{-5}	0.589
平均值			0.588
相对标准偏差			1.0%

		N 02.1		5 6 6 7 1 6 里。	~	
测具次数-	GBW 04402		GBW 04403		GBW 04404	
侧里仄奴	$R_{[M^{3/M^2}]B^2}$	$R_{[M^{3/M^2}]}$	$R_{[M^{3/M^{2}}]B^{3}}$	$R_{[M^3/M^2]B^3C}$	R[M3/M2]B4	<i>R</i> [M3/M2]B4C
1	$1.279\ 2{ imes}10^{-3}$	$1.281 \ 4 \times 10^{-3}$	$1.240\ 7{ imes}10^{-3}$	$1.248\ 8{ imes}10^{-3}$	$1.173\ 2{ imes}10^{-3}$	$1.184 \ 8 \times 10^{-3}$
2	$1.279\ 4{ imes}10^{-3}$	$1.280\ 3{ imes}10^{-3}$	$1.239\ 4 imes 10^{-3}$	$1.247 \ 3 \times 10^{-3}$	$1.172 \ 4 \times 10^{-3}$	$1.184\ 1{ imes}10^{-3}$
平均值	C)1994_2021	$1.280.8 \times 10^{-3}$	Journal Electro	.1.248 1×10 ⁻³	Jouse All rights	1.1844×10^{-3}

表 3 GBW04402~GBW04404 号标准水样测量数据

将表³的数据和系数 $K_{[D/H]}$ 代入式(⁵),最 终计算的数据列于表⁴。由表⁴可见,采用双标 准外标法测量国家标准水样品的结果与标准值 的偏差为 $\pm 0.1\%$,对于低分辨的气体质谱计,结 果的准确度达到了比较理想的状态。

2.4.4 不确定度评估 由式(5)可知,不确定度 的主要来源有³个方面:(1)测量数据线性校正 后的相对标准偏差 ⁴;(2)氘氢丰度比差值校正

表 4 GBW04402、GBW04403 号标准水 氘氢丰度比测量数据

样品编号	GBW04402	GBW 04403
氘氢测量计算值 R[D/H]s	$1.456 imes 10^{-4}$	$1.264 imes 10^{-4}$
国家标准值 R[D/H]	$1.457 imes 10^{-4}$	1.263×10^{-4}
相对偏差	-0.1%	0.1%

系数不确定度 $\mu_{K[D/H]}$;(3)国家标准水样定值的 不确定度 κ_{0} 由近似表达为(HD/H₂)/2 带来 的不确定度在 10^{-4} 量级,可以忽略。其中 κ 为 0.1%; $\mu_{K[D/H]}$ 由式(4)和多次测量的 A 类不确定 度 $\mu_{K[D/H]A}$ (1.0%)合成; κ 为 0.1%。取 $R_{[D/H]B1}=1.557\times10^{-4}$, $R_{[D/H]B2}=8.90\times10^{-5}$, $R_{[M^{3}/M^{2}]B1C}=1.298 0\times10^{-3}$, $R_{[M^{3}/M^{2}]B2C}=1.184 4$ $\times 10^{-3}$, $R_{[M^{3}/M^{2}]SC}=1.280 8\times10^{-3}$, $K_{[D/H]}=$ 0.588。据不确定度合成规范^[18],最终计算出合 成相对标准不确定度 μ 为 0.8%。其计算式为 (6)式; 对于式(5)中 $K_{[D/H]}$ ($R_{[M^{3}/M^{2}]B1C}$ - $R_{[M^{3}/M^{2}]SC}$)部分的不确定度 μ_{1} , 计算公式为(7) 式;最终氘氢比测量的不确定度 μ 的计算式为(8 式)。

$$\mu_{\mathrm{K}[\mathrm{D}/\mathrm{H}]} = \sqrt{\left[\left(\frac{R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{1}}}{R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{1}} - R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{2}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{2}}}{R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{1}} - R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{2}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{2}}}{R_{\mathrm{I}\mathrm{D}/\mathrm{H}]\mathrm{B}^{2}}}\right)^{2} + \mu_{\mathrm{S}}^{2} + \mu_{\mathrm{S}}^{2} + \mu_{\mathrm{K}[\mathrm{D}/\mathrm{H}]\mathrm{A}}^{2}}$$
(6)
$$\mu_{\mathrm{I}} = \sqrt{\left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{I}\mathrm{C}} - R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}}{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{I}\mathrm{C}}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}}{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{I}\mathrm{C}} - R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}}{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}}\mathrm{B}\mathrm{C}}{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{B}\mathrm{C}}\right)^{2} + \left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{2}}\mathrm{M}^{2}\mathrm{M}^{3}/\mathrm{M}^{3}/\mathrm{M}^{2}]\mathrm{M}^{3} + \left(\frac{R_{\mathrm{I}\mathrm{M}^{3}/\mathrm{M}^{3}/\mathrm{M}^{2}/\mathrm{M}^{2}/\mathrm{M}^{3}/\mathrm{M}^{3}$$

论

3 结

探索了降低电子轰击能量,取消电子准直磁 铁,降低电子密度,降低进样压强三种方法,以降 低 H_3^+ 的产生。通过等 H_2^+ 线性校正测量值的 方法实现了样品在多次测量过程中等 H_2^+ 校 正。在线性校正的基础上利用双标准外标了氘 氢丰度比差值系数,利用该系数对两个国家一级 标准水样进行了测量,结果与国家标准值偏差± 0.1%,最终评估不确定度为0.8%。本工作研 究的天然水平氘氢丰度比测量方法适用于低分 辨气体质谱计。

参考文献:

[1] NORU KUSAKABE, HIROAKI SATO, SET-

Journal of Volcanology and geothermal Research, 1999, 89, 231-242.

- [2] 顾燕峰,高峰,蔡迎春,高浓重水的落滴法分析探 讨[J]. 化学工程师, 2000,2:66.
- [3] 李桂花,郑彦巍. 红外光谱法测定中等浓度重水[J]. 同位素, 1993, 6(3):168-171.
- [4] GEORGE F, SHIPMA N. Gas-Solid Chromatography of Mixtures of Hydrogen Isotopes[J]. J Anal Chem, 1962, 34(7).
- [5] HUNT PP, SMITH HA. The Separation of Hydrogen, Deuterium and Hydrogen Deuteride Mixtures by Gas Chromatography [J]. J Phys Chem, 1961, 65: 87-89.
- [6] PAOLO lecchi, FRED P, ABRAMS ON. An Innovative Method for Measuring Hydrogen and Deuterium: Chemical Reaction Interface Mass

SUYA NAKADA, et al. Water Contents and (C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www. Hydrogen Isotopic Ratios of Rocks and Minerals Am Soc Mass Spectrom, 2000, 11: 400-406.

From the 1991 Eruption of Unzen Volcano [J].

[7] JESSICA, HOPPLE, JANET, et al. Comparison

of Two Stable Hydrogen Isotope-ratio Measurement Techniques on Antarctic Surface-water and Ice Samples [J]. Chemical Geology, 1998, 152: 321-323.

- [8] TORSTEN W, VENNEMA NN, ONEIL JR. Hydrogen Isotope Exchange Reactions Between Hydrous Minerals and Molecular Hydrogen: I.a New Approach for the Determination of Hydrogen Isotope Fractionation at Moderate Temperatures [J]. Geochimica at Cosmochimica Acta, 1996, 60(13): 2 437-2 451.
- [9] 张榕森,倪葆龄,黄春辉,等.我国珠穆朗玛峰高海 拔地区冰雪水中氢氧同位素分析[J].北京大学学 报:自然科学版,1979,15(3):70-80.
- [10] 李立武,杜晓宁.重水的氢同位素组成分析[J]. 质谱学报,2005,10(增刊):59-60.
- [11] 蒋昌勇,陈静,曹小华. 氕氘比 CH/CD 的四极质 谱计测量[J]. 原子能科学技术, 2002,07, 36(4/

5). 462-465.

- [12] GBW04401~GBW04404,氢氧同位素标准水
 [S]// 国家技术监督局.1988.05.
- [13] 金德秋,周锡煌,倪葆龄.氢氧同位素标准水样的研制[J].计量学报,1991,12(2):85-91.
- [14] 金德秋,张中起. 锌还原-封管法用于微量水中氢 同位素的质谱分析[J]. 北京大学学报: 自然科 学版,1988, 24(6):665-671.
- [15] 金德秋,王正新,镁-铂还原法分析微量水中氢的 同位素[J].北京大学学报:自然科学版,1985, 21(1):42-46.
- [16] 张海路,喻祯静,李庆松,等.氢氘化锂氘丰度质 谱分析技术研究[J].质谱学报,2001,22(1): 25-31.
- [17] 实用化学手册编写组.实用化学手册[M].北 京:科学出版社,2001.
- [18] 叶德培.测量不确定度[M].北京:国防工业出 版社,1996:22-24.

专利简讯:

一种阀式放射源屏蔽装置

【公开日】2007.01.31 【分类号】G21F5/02

【公开号】CN1905080 【申请日】2005.07.29

【申请号】200510083497.9 【申请人】清华同方威视技术股份有限公司;清华大学

一种阀式放射源屏蔽装置,涉及核辐射防护及核应用技术领域。本发明装置包括阀体和阀芯。 其结构特点是,所述阀体中嵌接屏蔽体,屏蔽体中可放入射线源并使射线源的射线束沿屏蔽体中所设 通孔射出。所述阀芯与通孔垂直设置在阀体内,阀芯上设有与通孔轴线方向相同的射线束通道。阀 芯的一端与设置在阀体内的压缩机构连接,阀芯的另一端与设置在阀体外的推力机构连接。当射线 源非工作状态时,在压缩机构的作用下阀芯遮挡通孔使射线源封闭。当射线源工作状态时,在推力机 构的作用下阀芯的通道正对通孔使射线源开启。同现有技术相比,本发明具有结构简单、体积小巧的 特点,能实现屏蔽装置的标准化和参数化,并利用标准的外部结构满足多源体集成的要求。