马佳, 马俊平, 李业军. 数值模拟激光辅助凝聚抑制同位素分离中喷嘴构型对超声速射流的影响[J]. 同位素, 2023, 36(6): 605-611. DOI: 10.7538/tws.2023.youxian.016
引用本文: 马佳, 马俊平, 李业军. 数值模拟激光辅助凝聚抑制同位素分离中喷嘴构型对超声速射流的影响[J]. 同位素, 2023, 36(6): 605-611. DOI: 10.7538/tws.2023.youxian.016
MA Jia, MA Junping, LI Yejun. Numerical Simulation of the Effect of Nozzle Structure on the Supersonic Jet Flow of Condensation Repression by Isotope Selective Laser Activation[J]. Journal of Isotopes, 2023, 36(6): 605-611. DOI: 10.7538/tws.2023.youxian.016
Citation: MA Jia, MA Junping, LI Yejun. Numerical Simulation of the Effect of Nozzle Structure on the Supersonic Jet Flow of Condensation Repression by Isotope Selective Laser Activation[J]. Journal of Isotopes, 2023, 36(6): 605-611. DOI: 10.7538/tws.2023.youxian.016

数值模拟激光辅助凝聚抑制同位素分离中喷嘴构型对超声速射流的影响

Numerical Simulation of the Effect of Nozzle Structure on the Supersonic Jet Flow of Condensation Repression by Isotope Selective Laser Activation

  • 摘要: 激光辅助凝聚抑制同位素分离(CRISLA)方法需要激光选择性激发超声速射流中的同位素分子,装置内的流场会对分离效果产生影响。CRISLA中超声速射流主要受喷嘴构型的影响,本研究利用计算流体力学(CFD)方法研究喷嘴构型参数(喉部直径、扩张段长度、扩张角度)对CRISLA流动的影响。结果表明,喉部直径是影响射流低温区温度的主要因素,喷嘴扩张段长度对喉部直径3~5 mm喷嘴射流低温区温度影响不明显,而对喉部直径<3 mm的喷嘴射流低温区温度影响较大;喉部直径在3~5 mm时,扩张段长度及扩张角度对射流低温区位置影响小,低温区都位于喷嘴外,喉部直径<2 mm时,扩张段长度与扩张角度对射流低温区位置有显著影响,需要优化二者关系才能在喷嘴外获得较理想射流。在保障低温区位于喷嘴外的前提下,适当增大扩张段角度有利于射流径向扩散。研究的几种喷嘴构型能形成较理想射流,可为未来实验研究提供参考。

     

    Abstract: Condensation repression by isotope selective laser activation (CRISLA) is a promising laser isotope separation (LIS) method,which has the ability to separate a wide range of isotopes. The flow field within the separation device has an impact on the separation performance. The flow in the separation device under different conditions was modelled and simulated by computational fluid dynamics software. Based on the simulation results,the effect of nozzle structure on the flow was analysed. The results showed that the throat diameter is the most important nozzle structure factor affecting the temperature of the flow, and the length of the nozzle expansion section affected the temperature of the flow more significantly in the nozzles with a throat diameter of 3 mm or less; For nozzles with a throat diameter of 35 mm, the low-temperature region of the supersonic flow is easily formed outside the nozzle,for nozzles with a throat diameter of 2 mm or less, it is necessary to optimize the length and angle of the nozzle expansion section to obtain an ideal flow field. Finally, the article provides several nozzles that can form ideal flow fields, providing some reference for future experimental researches.

     

/

返回文章
返回