双峰介孔炭负载钯团簇用于芳香化合物的脱卤氘代

Bimodal Mesoporous Carbon Supported Palladium Clusters for Dehalogenative Deuteration of Aromatic Compounds

  • 摘要: 脱卤氘代反应具有标记位点精准、氘代率高等优势,是氘标记化合物的重要合成方法之一。本研究设计了一系列介孔炭负载钯催化剂(Pd@MC),以探究Pd@MC的Pd粒径尺寸、介孔尺寸对脱卤氘代性能的影响。利用氮气物理吸附和透射电子显微技术表征了Pd@MC的孔道结构与Pd粒径尺寸。脱卤氢解动力学研究表明,双峰介孔炭载Pd催化剂(Pd@BMC)与单峰介孔结构的小孔径介孔炭载Pd催化剂(Pd@SMC)和大孔径介孔炭载Pd催化剂(Pd@LMC)相比,具有更快的内扩散动力学,增加了底物与活性位点之间的传质效率。此外,小粒径的Pd团簇在H2/D2解离方面表现出更好的活性,有利于提高脱卤氢解/氘代反应动力学。因此,Pd@BMC可在室温条件下实现对溴苯胺快速精准脱卤氘代,氘代率与产率均高达99%,且氘代性能对含有供/吸电子取代基团的底物具有良好的兼容性。放大合成和循环稳定性测试表明Pd@BMC在脱卤氘代反应中具有应用潜力。

     

    Abstract: Dehalogenative deuteration represents a strategically important synthetic methodology for deuterium labeling, characterized by its precise positional selectivity and high isotopic incorporation efficiency. In this study, we engineered a series of mesoporous-carbon-supported palladium catalysts (Pd@MC) to investigate the effects of Pd nanoparticle size and mesopore dimensions on dehalogenative deuteration performance. Comprehensive characterization of pore architecture and Pd particle size distribution was achieved through N2 physisorption analysis and transmission electron microscopy. Kinetic studies of dehalogenative hydrogenolysis revealed that the bimodal mesoporous carbon-supported Pd catalyst (Pd@BMC) exhibited superior performance compared with the single-modal mesoporous structure of the small-pore mesoporous carbon-supported Pd catalyst (Pd@SMC) and the large-pore mesoporous carbon-supported Pd catalyst (Pd@LMC) for faster intraparticle diffusion kinetics, improving substrate accessibility to active sites. Moreover, small-sized Pd clusters demonstrate enhanced catalytic activity in H2/D2 dissociation, thereby improving the kinetics of dehalogenative hydrogenation/deuteration reactions. Consequently, the Pd@BMC catalyst enables rapid and precise dehalogenative deuteration of 4-bromoaniline at room temperature, achieving both deuteration efficiency and isolated yields exceeding 99%. The deuteration protocol demonstrates functional group tolerance for both electron-donating and electron-withdrawing substituents. Scale-up experiments and cycling stability tests further demonstrate the potential of Pd@BMC for deuterium labeling applications.

     

/

返回文章
返回