利用MOCA程序模拟PGNAA技术探测地雷的方法

张天宝, 何德东, 景士伟, 王强

张天宝, 何德东, 景士伟, 王强. 利用MOCA程序模拟PGNAA技术探测地雷的方法[J]. 同位素, 2021, 34(2): 156-162. DOI: 10.7538/tws.2021.34.02.0156
引用本文: 张天宝, 何德东, 景士伟, 王强. 利用MOCA程序模拟PGNAA技术探测地雷的方法[J]. 同位素, 2021, 34(2): 156-162. DOI: 10.7538/tws.2021.34.02.0156
ZHANG Tianbao, HE Dedong, JING Shiwei, WANG Qiang. Simulation of PGNAA Landmine Detection Method by MOCA Program[J]. Journal of Isotopes, 2021, 34(2): 156-162. DOI: 10.7538/tws.2021.34.02.0156
Citation: ZHANG Tianbao, HE Dedong, JING Shiwei, WANG Qiang. Simulation of PGNAA Landmine Detection Method by MOCA Program[J]. Journal of Isotopes, 2021, 34(2): 156-162. DOI: 10.7538/tws.2021.34.02.0156

利用MOCA程序模拟PGNAA技术探测地雷的方法

Simulation of PGNAA Landmine Detection Method by MOCA Program

  • 摘要: 利用MOCA程序设计地雷探测装置,并模拟瞬发γ中子活化分析(prompt gamma neutron activation analysis, PGNAA)技术探测地雷过程。采用东北师范大学NG-9型中子发生器为中子源,研究其内部绝缘材料(聚酰亚胺等)对中子能量分布的影响。在此基础上设计并优化装置,确定钨、碳化钨、钨+含硼聚乙烯+铅组合,分别作为慢化体、反射体与屏蔽体。相比单能中子源分布情况,慢化体、反射体、屏蔽体厚度降低。使用硅酸钇镥(lutetium yttrium oxyortho silicate, LYSO)探测器探测埋藏于含水量5%的土壤中、不同深度下地雷产生的伽玛射线。对氢、碳、氮、氧元素进行分析,定性确定了反坦克、步兵地雷的有效探测深度,结果表明,设计的装置具有可行性,可利用该装置进行实际PGNAA测试研究。
    Abstract: MOCA program is used to design landmine detection device, and the process of landmine detection by prompt gamma neutron activation analysis (PGNAA) is simulated. The Northeast Normal University NG-9 neutron generator was used as the neutron source to study the influence of its internal insulating material (polyimide, etc.) on the neutron energy distribution. On this basis, the device was designed and optimized to determine the combination of tungsten, tungsten carbide and tungsten+boron-containing polyethylene+lead as the moderator, reflector and shield respectively. Compared with the distribution of singleenergy neutron sources, the thickness of the moderator, reflector and shield is reduced. The lutetium yttrium oxyortho silicate (LYSO) detector is used to detect gamma rays generated by landmines buried in soil with 5% water content at different depths. The hydrogen, carbon, nitrogen, and oxygen elements are analyzed to determine the effective depth of detection for anti-tank and infantry landmines, which shows that the designed device is feasible and can be used for actual PGNAA test research.
  •   2068

  • [1] 丁卫,沈高炜,王驰,等. 用于非金属地雷探测的声-地震耦合识别方法[J]. 光学精密工程,2014,22(5):1331-1338.Ding Wei, Shen Gaowei, Wang Chi, et al. Acoustic-to-seismic coupling based discrimination for non-metallic mine detection[J]. Optics and Precision Engineering, 2014, 22(5): 1331-1338(in Chinese).
    [2] 冯晅,鹿琪,刘财,等. 防步兵地雷地球物理探测技术国内外研究动态[J]. 地球物理学进展,2008,23(3):929-935.Feng min, Lu Qi, Liu Cai, et al. Summarization of geophysical detection technologies for antipersonnel mines[J]. Progress in Geophysics, 2008, 23(3): 929-935(in Chinese).
    [3] 丁阁,储诚胜,郝樊华,等. 脉冲快热中子分析探雷技术实验研究[J]. 核技术,2013,36(3):030201-1-7. Ding Ge, Chu Chengsheng, Hao Fanhua, et al. Experimental research on PFTNA landmine detection[J]. Nuclear Techniques, 2013, 36(3): 030201-1-7(in Chinese).
    [4] 王群,何云龙,王春和,等. 基于神经网络的探地雷达探雷研究[J]. 电波科学学报,2001,16(3):398-403.Wang Qun, He Yunlong, Wang Chunhe, et al. Study of mine detection with GPR based on neural networks[J]. Chinese Journal of Radio Science, 2001, 16 (3): 398-403(in Chinese).
    [5] 丁阁. 脉冲快热中子分析探雷有效信号获取及解析[D]. 绵阳:中国工程物理研究院,2013:4-6.
    [6] 丁文,窦玉玲,王国保,等. 爆炸物的探测技术综述[J]. 爆破器材,2011,40(5):33-37.Ding Wen, Dou Yuling, Wang Baoguo, et al. Review on detection technology for explosives[J]. Explosive Materials, 2011, 40 (5): 33-37(in Chinese).
    [7] 乔亚华. 中子管的研究进展及应用[J]. 核电子学与探测技术,2008,28(6):1134-1139.Qiao Yahua. Progress in studies and applications of neutron tube[J]. Nuclear Electronics & Detection Technology, 2008, 28(6): 1134-1139(in Chinese).
    [8] 黑大千. PGNAA在线分析技术的发展与现状[J]. 科技资讯,2014,12(6):63-64.
    [9] 何伶俐,庹先国,穆克亮,等. 基于PGNAA技术在线分析系统的应用[J]. 物探化探计算技术,2005,27(4):0317-0320.He Lingli, Tuo Xianguo, Mu Keliang, et al. Development and applications of the on-line analysis system based on pgnaa technology[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2005, 27 (4): 0317-0320(in Chinese).
    [10] 卢毅,宋朝晖. 瞬发伽玛中子活化分析技术发展现状[J]. 核电子学与探测技术,2013,33(12):1527-1531.
    Lu Yi, Song Zhaohui. Development of prompt gamma neutron activation analysis techniques[J]. Nuclear Electronics & Detection Technology, 2013, 33(12): 1527-1531(in Chinese).
    [11] 邵伟. 蒙特卡洛方法及在一些统计模型中的应用[D]. 济南:山东大学 ,2012:Ⅰ-Ⅲ.
    [12] 裴鹿成. 蒙特卡罗方法发展中的若干问题[J]. 计算物理,1992,9(4):563-565.Pei Lucheng. Some problems on monte carlo method development[J]. Chinese Journal of Computational Physics, 1992, 9(4): 563-565(in Chinese).
    [13] 杜龙. 基于6Li中子探测器的蒙特卡洛模拟及实验测量[D]. 上海:中国科学院研究生院,2014:25-27.
    [14] Pinault J L. Moca training[C]. IAEA: Training organized in the framework of the ARCAL Projecct, 2002.
    [15] 贾文宝,陈晓文,徐爱国,等. 利用蒙卡程序MOCA模拟研究BGO探测器的γ响应谱[C]∥中国核科学技术进展报告(第一卷),中国核学会2009年学术年会论文集. 北京:原子能出版社,2009:206-265.
    [16] 黄孝华. 新型功能性聚酰亚胺的合成与性能研究[D]. 上海:上海交通大学,2011:1-18.
    [17] 张洋. 基于DSP的中子发生器控制台研究与设计[D]. 长春:东北师范大学,2015:8-10.
    [18] 蒋舟. 基于PGNAA技术的土壤中浅层掩埋爆炸物检测研究[D]. 南京:南京航空航天大学,2017:28-40.
    [19] 阮景辉,赵裕民,王正民,等. 铅的快中子扩散系数和去弹性散射截面的测定[J]. 原子能科学技术,1965,2:108-108.
    [20] Uhlárˇ, KaduloVá M, Alexa P, et al. A new reflector structure for facility thermalizing D-T neutrons[J]. Journal of Radio Analytical and Nuclear Chemistry, 2014, 300(2): 809-818.
    [21] 吴文雯. 地雷探测的声共振识别方法研究[D]. 上海:上海大学,2015:7-8.
    [22] 丁卫,沈高炜,周瑜秋,等. 地雷埋藏深度对声波激发的地表振动影响的实验研究[J]. 声学技术,2013,32(4):263-267.Ding Wei, Shen Gaowei, Zhou Yuqiu, et al. Experimental study of the influence of the mine burial depth on the acoustically induced ground vibration[J]. Technical Acoustics, 2013, 32 (4): 263-267(in Chinese).
    [23] 王驰,于瀛洁,李醒飞,等. 土壤地雷共振系统模型解析[J]. 物理学报,2010,59(9):6319-6325.Wang Chi, Yu Yingjie, Li Xingfei, et al. Analysis of earth-mine resonance model[J]. Acta Physica Sinica, 2010, 59(9): 6319-6325(in Chinese).
  • 期刊类型引用(1)

    1. 王泽亮,贾文宝,杨晓艳,张镇华,张焱,程璨. 面向PGNAA技术的碘化钠探测器MCNP模拟计算. 同位素. 2024(05): 455-462 . 本站查看

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  788
  • HTML全文浏览量:  0
  • PDF下载量:  267
  • 被引次数: 2
出版历程
  • 刊出日期:  2021-04-19

目录

    /

    返回文章
    返回