[1] |
Soddy F. The radio-elements and the Periodic Law[J]. Nature, 1913, 91(2 264): 57-58.
|
[2] |
Farmer J G, Baxter M S. Atmospheric carbon dioxide levels as indicated by the stable isotope record in wood[J]. Nature, 1974, 247(5 439): 273-275.
|
[3] |
林光辉. 稳定同位素生态学[M]. 北京:高等教育出版社,2013.
|
[4] |
Ghashghaie J, Badeck F W. Opposite carbon isotope discrimination during dark respiration in leaves versus roots-a review[J]. New Phytologist, 2014, 201(3): 751-769.
|
[5] |
Cernusak L A, Ubierna N, Winter K, et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants[J]. New Phytologist, 2013, 200(4): 950-965.
|
[6] |
Brüggemann N, Gessler A, Kayler Z, et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review[J]. Biogeosciences, 2011, 8(11): 3457-3489.
|
[7] |
Matteo G D, Nardi P, Fabbio G. On the use of stable carbon isotopes to detect the physiological impact of forest management: the case of mediterranean coppice woodland[J]. Forest Ecology & Management, 2017, 389: 158-166.
|
[8] |
张蕊,赵钰,何红波,等. 基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响[J]. 应用生态学报,2017,28(7):2379-2388. Zhang Rui, Zhao Yu, He Hongbo, et al. Investigation on effects of elevated atmospheric CO2 concentration on plant-soil system carbon cycling: Based on stable isotopic technique[J]. The journal of applied ecology, 2017, 28(7): 2379-2388(in Chinese).
|
[9] |
赵业思,王建,商志远. 树轮不同组分稳定碳同位素对气候变化响应敏感性:研究进展与评述[J]. 生态学杂志,2014,33(9):2538-2547.Zhao Yesi, Wang Jian, Shang Zhiyuan. Climate sensitivity differences of stable carbon isotope in different components of tree ring: Research progress and synthesis[J]. Chinese Journal of Ecology, 2014, 33(9): 2538-2547(in Chinese).
|
[10] |
沈芳芳,樊后保,吴建平,等. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报,2017,39(11):114-124.Shen Fangfang, Fan Houbao, Wu Jianping, et al. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124(in Chinese).
|
[11] |
刘贤赵,张勇,宿庆,等. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展,2014,29(12):1341-1354.Liu Xianzhao, Zhang Yong, Su Qin, et al. Research progress in responses of modern terrestrial plant carbon isotope composition to climate change[J]. Advances in Earth Science, 2014, 29(12): 1341-1354(in Chinese).
|
[12] |
Mckinney C R, Mccrea J M, Epstein S, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios[J]. Review of Scientific Instruments, 1950, 21(8): 724-730.
|
[13] |
Farquhar G D, Cernusak L A. Ternary effects on the gas exchange of isotopologues of carbon dioxide[J]. Plant Cell & Environment, 2012, 35(7): 1221-1231.
|
[14] |
Caemmerer S V, Evans J R. Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants[J]. Functional Plant Biology, 1991, 18(3): 287-305.
|
[15] |
Hobbie E A, Werner R A. Intramolecular compound-specific and bulk carbon isotope patterns in C3, and C4, plants: a review and synthesis[J]. New Phytologist, 2004, 161(2): 371-385.
|
[16] |
Gessler A, Tcherkez G, Peuke A D, et al. Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis[J]. Plant Cell & Environment, 2010, 31(7): 941-953.
|
[17] |
Cernusak L A, Winter K, Aranda J, et al. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species[J]. Tree Physiology, 2009, 29(9): 1153-1161.
|
[18] |
Tcherkez G, Farquhar G, Badeck F, et al. The oretical considerations about carbon isotope distribution in glucose of C3 plants[J]. Functional Plant Biology, 2004, 31(9): 857-877.
|
[19] |
Henderson S A, Caemmerer S V, Farquhar G D. Short-term measurements of carbon isotope discrimination in several C4 species[J]. Aust J Plant Physiol, 1992, 9(3): 263-285.
|
[20] |
Korol R L, Kirschbaum M U, Farquhar G D, et al. Effects of water status and soil fertility on the C-isotope signature in Pinus radiata[J]. Tree Physiology, 1999, 19(9): 551-562.
|
[21] |
Gessler A, Schrempp S, Matzarakis A, et al. Radiation modifies the effect of water availability on the carbon isotope composition of beech (fagus sylvatica)[J]. New Phytologist, 2001, 150(3): 653-664.
|
[22] |
Warren, Charles R. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer[J]. Journal of Experimental Botany,2007,59(7): 1475-1487.
|
[23] |
Flexas J, Ribascarbó M, Diazespejo A, et al. Mesophyll conductance to CO2: current knowledge and future prospects[J]. Plant Cell & Environment, 2010, 31(5): 602-621.
|
[24] |
Gessler A, Tcherkez G, Peuke A D, et al. Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis[J]. Plant Cell & Environment, 2010, 31(7): 941-953.
|
[25] |
Farquhar G D. On the nature of carbon isotope discrimination in C4 species[J]. Functional Plant Biology, 1983, 10(2): 205-226.
|
[26] |
Evans J R, Von C S. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco[J]. Plant Cell & Environment, 2013, 36(4): 745-756.
|
[27] |
Henderson S A, Caemmerer S V, Farquhar G D. Short-term measurements of carbon isotope discrimination in several C4 pecies[J]. Aust J Plant Physiol, 1992, 9(3): 263-285.
|
[28] |
Caemmerer S, Ghannoum O, Pengelly J J L, et al. Carbon isotope discrimination as a tool to explore C4 photosynthesis[J]. Journal of Experimental Botany, 2014, 65(13): 3459-3470.
|
[29] |
Rossmann A, Butzenlechner M, Schmidt H L. Evidence for a nonstatistical carbon isotope distribution in natural glucose[J]. Plant Physiology, 1991, 96(2): 609-614.
|
[30] |
Ahirwal J, Maiti S K, Singh A K. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India[J]. Science of the Total Environment, 2017, 583: 153-162.
|
[31] |
Basher L, Betts H, Lynn I, et al. A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand[J]. Geomorphology, 2017, 307: 93-106.
|
[32] |
Finzi A C, Abramoff R Z, Spiller K S, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 2015, 21(5): 2082-2094.
|
[33] |
吴健,沙晨燕,王敏,等. 典型滨岸草地生态系统碳稳定同位素组成及分布特征[J]. 应用生态学报,2017,28(7):2231-2238.Wu jian, Sha Chenyan, Wang Ming, et al. Composition and distribution characteristics of stable carbon isotope in typical riparian grassland ecosystem[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2231-2238(in Chinese).
|
[34] |
An T, Schaeffer S, Li S, et al. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling[J]. Soil Biology & Biochemistry, 2015, 80(80): 53-61.
|
[35] |
顾鑫,安婷婷,李双异,等. δ13C法研究秸秆添加对棕壤团聚体有机碳的影响[J]. 水土保持学报,2014,28(2):243-247.Gu Xin, An Tingting, Li Shuangyi, et al. Effects of application of straw on organic carbon in brown soil aggregates by δ13C method[J]. Journal of Soil & Water Conservation, 2014, 28(2): 243-247(in Chinese).
|
[36] |
Schlesinger W H. The formation of caliche in soils of the Mojave Desert, California[J]. Geochimica Et Cosmochimica Acta, 1985, 49(1): 57-66.
|
[37] |
李彦,王玉刚,唐立松. 重新被“激活”的土壤无机碳研究[J]. 土壤学报,2016,53(4):845-849.Li Yan, Wang Yugang, Tang Lisong. Study on soil inorganic carbon reactivated[J]. Journal of Soil Science, 2016, 53(4): 845-849(in Chinese).
|
[38] |
Worrall F, Swank W T, Burt T. Fluxes of inorganic carbon from two forested catchments in the Appalachian Mountains[J]. Hydrological Processes, 2010, 19(15): 3021-3035.
|
[39] |
Johnson M S, Lehmann J, Couto E G, et al. DOC and DIC in flow paths of Amazonian headwater catchments with hydrologically contrasting soils[J]. Biogeochemistry (Dordrecht), 2006, 81(1): 45-57.
|
[40] |
兰志龙,赵英,张建国,等. 陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征[J]. 环境科学,2018,39(1):339-347.Lan Zhilong, Zhao Yin, Zhang Jianguo,et al. Profile distribution of soil organic and inorganic carbon under different land use types in the Loess Plateau of Northern Shaanxi[J]. Environmental Science, 2018, 39(1): 339-347(in Chinese).
|
[41] |
Liu J, Fa K, Zhang Y, et al. Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 2015, 42(14): 5779-5785.
|
[42] |
Cook G D, Williams R J, Hutley L B, et al. Variation in vegetative water use in the savannas of the North Australian Tropical Transect[J]. Journal of Vegetation Science, 2002, 13(3): 413-418.
|
[43] |
Easlon H M, Nemali K S, Richards J H, et al. The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana[J]. Photosynthesis Research, 2014, 119(1-2): 119-129.
|
[44] |
Bai H, Purcell L C. Response of carbon isotope discrimination and oxygen isotope composition to mild drought in slow-and fast-wilting soybean genotypes[J]. Journal of Crop Improvement, 2018, 32(2): 239-253.
|
[45] |
Song X, Loucos K E, Simonin K A, et al. Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton[J]. New Phytologist, 2015, 206(2): 637-646.
|
[46] |
Song X, Barbour M M. Leaf water oxygen isotope measurement by direct equilibration[J]. New Phytologist, 2016, 211(3): 1120-1128.
|
[47] |
Alonsocantabrana H, Caemmerer S V. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species[J]. Journal of Experimental Botany, 2016, 67(10): 3109-3121.
|
[48] |
Castagneri D, Battipaglia G, Von G A, et al. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea[J]. Tree Physiology, 2018, 38(8): 1098-1109.
|
[49] |
Young G, Loader N, Mccarroll D, et al. Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall[J]. Climate Dynamics, 2015, 45(11-12): 3609-3622.
|
[50] |
Jaggi M, Saurer M, Fuhrer J, et al. The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies[J]. Oecologia, 2002, 131(3): 325-332.
|
[51] |
Helle G, Schleser G H. Beyond CO2-fixation by Rubisco an interpretation of 13C/12C variations in tree rings from novel intraseasonal studies on broad-leaf trees[J]. Plant Cell and Environment, 2004, 27(3): 367-380.
|
[52] |
Kimak A, Leuenberger M. Are carbohydrate storage strategies of trees traceable by early-latewood carbon isotope differences?[J]. Trees, 2015, 29(3): 859-870.
|
[53] |
Battipaglia G, Saurer M, Cherubini P, et al. Elevated CO2, increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites[J]. New Phytologist, 2013, 197(2): 544-554.
|
[54] |
Lévesque M, Siegwolf R, Saurer M, et al. Increased water use efficiency does not lead to enhanced tree growth under xeric and mesic conditions[J]. New Phytologist, 2014, 203(1): 94-109.
|
[55] |
Martínez-Sancho E, Dorado-Liñán I, Gutiérrez-Merino E, et al. Increased water use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits[J]. Glob Chang Biol, 2017, 24(3): 1012-1028.
|
[56] |
Pellizzari E, Camarero J J, Gazol A, et al. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback[J]. Glob Chang Biol, 2016, 22(6):2125-2137.
|
[57] |
Sun S J, He C, Qiu L, et al. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in Northern China[J]. Agricultural and Forest Meteorology, 2018, 252: 39-48.
|
[58] |
Colangelo M, Camarero J J, Borghetti M, et al. Size matters a lot: drought-affected Italian oaks are smaller and show lower growth prior to tree death[J]. Frontiers in Plant Science, 2017, 8: 135.
|
[59] |
林鹏. 植物群落学[M]. 上海:上海科学技术出版社,1986.
|
[60] |
Körner C, Leuzinger S, Riedl S, et al. Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples[J]. Alpine Botany, 2016, 126(2): 153-166.
|
[61] |
Santiago L S, Silvera K, Andrade J L, et al. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition[J]. Environmental Research Letters, 2017, 12(11): 115 006.
|
[62] |
Brooks J R, Flanagan L B, Buchmann N, et al. Carbon isotope composition of boreal plants: functional grouping of life forms[J]. Oecologia, 1997, 110(3): 301-311.
|
[63] |
赵丹,程军回,刘耘华,等.荒漠植物梭梭稳定碳同位素组成与环境因子的关系[J]. 生态学报,2017,37(8):2743-2752. Zhao Dan, Cheng Junhui, Liu Yunhua, et al. Relationship of stable carbon isotope composition with environmental factors in the desert plant Haloxylon ammodendron[J]. Acta Ecologica Sinica, 2017, 37(8): 2743-2752(in Chinese).
|
[64] |
Garten C T, Taylor G E. Foliar δ13C within a temperate deciduous forest: spatial, temporal, and species sources of variation[J]. Oecologia, 1992, 90(1): 1-7.
|
[65] |
Pan S, Zhang W, Zhao M, et al. Altitude patterns of leaf carbon isotope composition in a subtropical monsoon forest[J]. Polish Journal of Ecology, 2016, 64(2): 178-188.
|
[66] |
He Z, Zhan S, Wang W, et al. Different patterns of changes in foliar carbon isotope composition along altitude[J]. Polish Journal of Ecology, 2017, 65(2): 227-235.
|
[67] |
Gavazov K, Hagedorn F, Buttler A, et al. Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient[J]. Oecologia, 2016, 180(1): 257-264.
|
[68] |
任书杰, 于贵瑞. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J]. 植物生态学报,2011,35(2):119-124. Ren Shujie, Yu Guirui. Carbon isotope composition 478 of C3 plants and water use efficiency in China[J]. Chinese Journal of Plant Ecology, 2011, 35(2): 119-124(in Chinese).
|
[69] |
何春霞,李吉跃,孟平,等. 树木叶片稳定碳同位素分馏对环境梯度的响应[J]. 生态学报,2010,30(14):3 828.He Chunxia, Li Jiyue, Meng Ping, et al. Response of stable carbon isotope fractionation of tree leaves to environmental gradient[J]. Chinese Journal of Ecology, 2009, 30(14): 3 828.
|
[70] |
Ma F, Liang W, Zhou Z, et al. Spatial variation in leaf stable carbon isotope composition of three Caragana Species in Northern China[J]. Forests, 2018, 9(6): 297.
|
[71] |
Esmaeilpour A, Labeke M C V, Samson R, et al. Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio ( Pistacia vera, L.) cultivars under drought stress condition[J]. Scientia Horticulturae, 2016, 211: 158-166.
|
[72] |
Flanagan L B, Brooks J R, Ehleringer J R. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: a comparison of functional characteristics in plants from three mature forest types[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D24): 28861-28869.
|
[73] |
Buchmann N, Kaplan J O. Carbon isotope discrimination of terrestrial ecosystems—How well do observed and modeled results match?[J]. Global Biogeochemical Cycles in the Climate System, 2001, 20(1): 253-266.
|
[74] |
Keenan T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499(7 458): 324-327.
|
[75] |
Treydte K S, Schleser G H, Helle G, et al. The twentieth century was the wettest period in northern Pakistan over the past millennium[J]. Nature, 2006, 440(7 088): 1179-1182.
|
[76] |
Timofeeva G, Treydte K, Bugmann H, et al. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment[J]. Tree Physiology, 2017, 37(8): 1-14.
|
[77] |
Pellizzari E, Camarero J J, Gazol A, et al. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback[J]. Glob Chang Biol, 2016, 22(6): 2125-2137.
|
[78] |
袁亚鹏, 赵阳, 赵传燕, 等. 黑河下游不同生境胡杨(Populus euphratica)叶片碳同位素组成特征[J]. 中国沙漠,2015,35(6):1505-1511.Yuan Yapeng, Zhao Yang, Zhao Chuanyan, et al. Characteristics of foliar stable carbon isotope composition of populus euphratica for different niche in the lower reach of the Heihe River[J].Journal of Desert Research,2015, 35(6): 1505-1511(in Chinese).
|
[79] |
Dorman M, Perevolotsky A, Sarris D, et al. Amount vs temporal pattern: on the importance of intra-annual climatic conditions on tree growth in a dry environment[J]. Journal of Arid Environments, 2015, 118: 65-68.
|
[80] |
Saurer M, Borella S, Schweingruber F, et al. Stable carbon isotopes in tree rings of beech: climatic versus site-related influences[J]. Trees, 1997, 11(5): 291-297.
|
[81] |
Ratcliff C J, Voelker S L, Nolin A W. Tree-ring carbon isotope records from the western oregon cascade mountains primarily record summer maximum temperatures[J]. Tree-Ring Research, 2018, 74(2): 185-195.
|
[82] |
Zhang X, Liu X, Zhang Q, et al. Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris, var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, Northeastern China[J]. Agricultural and Forest Meteorology, 2018, 248: 145-155.
|
[83] |
Rezaie N, D′Andrea E, Bräuning A, et al. Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings[J]. Tree Physiology, 2018, 38(8): 1110-1126.
|
[84] |
Girardin M P, Bouriaud O, Hogg E H, et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization[J]. Proceedings of the National Academy of Sciences, 2016, 113(52): E8406-E8414.
|
[85] |
Gedalof Z, Berg A A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century[J]. Global Biogeochemical Cycles, 2010, 24(3): GB3 027.
|
[86] |
Sleen P V D, Groenendijk P, Vlam M, et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased[J]. Nature Geoscience, 2014, 8(1): 24-28.
|
[87] |
Dawson T E, Roden J S, Voelker S L, et al. Using redwood tree ring chronologies to obtain the long-view on california's coastal climate[C]. American Geophysical Union: Fall Meeting, 2014.
|
[88] |
路伟伟,余新晓,贾国栋,等. 密云山区油松树轮δ13C对气温和降水量变化的响应[J]. 林业科学,2018,54(3):1-7. Lu Weiwei, Yu Xinxiao, Jia Guodong, et al. Response of stable carbon Isotope of tree-ring to temperature and precipitation changes in pinus tabulaeformis in Miyun Mountain area[J]. Scientia Silvae Sinicae, 2018, 54(3): 1-7(in Chinese).
|
[89] |
张瑞波,尚华明,魏文寿,等. 树轮δ13C记录的阿勒泰地区近160年夏季气温变化[J]. 沙漠与绿洲气象,2014,8(2):34-40.Zhang Ruibo, Shang Huaming, Wei Wenshou, et al. Summer temperature changes in the Altay region of the Altay region recorded by the tree wheel δ13C in the past 160 years[J]. Desert and Oasis Meteorology, 2014, 8(2): 34-40 (in Chinese).
|
[90] |
Voelker S L, Roden J S, Dawson E. Millennial-scale tree-ring isotope chronologies from coast redwoods provide insights on controls over California hydroclimate variability[J]. Oecologia, 2018, 187(4): 897-909.
|
[91] |
徐辉,李磊,李庆会,等. 大气CO2浓度与温度升高对茶树光合系统及品质成分的影响[J]. 南京农业大学学报,2016,39(4):550-556. Xu Hui, Li Lei, Li Qinghui, et al. Effects of elevated atmospheric CO2 concentration and temperature on photosynthesis system and quality components in tea plant[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 550-556(in Chinese).
|
[92] |
Tei S, Yonenobu H, Sugimoto A, et al. Reconstructed summer palmer drought severity index since 1850 AD based on δ13C of larch tree rings in eastern Siberia[J]. Journal of Hydrology, 2015, 529: 442-448.
|
[93] |
Payomrat P, Liu Y, Pumijumnong N, et al. Tree-ring stable carbon isotope-based June-September maximum temperature reconstruction since AD 1788, north-west Thailand[J]. Tellus B: Chemical and Physical Meteorology, 2018, 70(1): 1443 655.
|
[94] |
Helama S, Arppe L, Timonen M, et al. A 7.5 ka chronology of stable carbon isotopes from tree rings with implications for their use in palaeo-cloud reconstruction[J]. Global and Planetary Change, 2018, 170: 20-33.
|
[95] |
Szepanski M M, Bendavid M, Ballenberghe V V. Assessment of anadromous salmon resources in the diet of the Alexander Archipelago wolf using stable isotope analysis[J]. Oecologia, 1999, 120(3): 327-335.
|
[96] |
York D. Least square fitting of straight line with correlated errors[J]. Earth & Planetary Science Letters, 1969, 5: 320-324.
|
[97] |
Wehr R, Saleska S R. The long-solved problem of the best-fit straight line: application to isotopic mixing lines[J]. Biogeosciences, 2017, 14(1): 1-19.
|
[98] |
Phillips D L, Koch P L. Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia, 2002, 133(1): 14-18.
|
[99] |
Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480.
|
[100] |
Gentsch L, Hammerle A, Sturm P, et al. Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: a Bayesian modelling approach[J]. Plant Cell & Environment, 2014, 37(7):1516-1535.
|
[101] |
Evaristo J, Mcdonnell J J, Clemens J. Plant source water apportionment using stable isotopes: a comparison of simple linear, two compartment mixing model approaches[J]. Hydrological Processes, 2017, 31(21): 3750-3758.
|
[102] |
Riley W J, Still C J, Torn M S, et al. A mechanistic model of H182O and C18O2 fluxes between ecosystems and the atmosphere: model description and sensitivity analyses[J]. Global Biogeochemical Cycles, 2002, 16(4): 42-1-42-14.
|
[103] |
Suits N S, Denning A S, Berry J A, et al. Simulation of carbon isotope discrimination of the terrestrial biosphere[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1 017.
|
[104] |
Scholze M, Kaplan J O, Knorr W, et al. Climate and interannual variability of the atmosphere-biosphere 13CO2 flux[J]. Geophysical Research Letters, 2003, 30(2): 67-67.
|
[105] |
Spahni R, Joos F, Stocker B D, et al. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century[J]. Climate of the Past, 2013, 9(3): 1287-1308.
|
[106] |
Oleson K W, Lawrence D M, Bonan G B. Technical description of version 4.5 of the community land model (CLM) ncar tech note NCAR/TN-503+STR, national center for atmospheric research, boulder[J]. Geophysical Research Letters, 2013, 37(7): 256-265.
|
[107] |
Mao J, Ricciuto D M, Thornton P E, et al. Evaluating the community land model in a pine stand with shading manipulations and 13CO2 labeling[J]. Biogeosciences, 2016, 13(3): 641-657.
|
[108] |
Raczka B, Duarte H F, Koven C D, et al. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)[J]. Biogeosciences, 2016, 13(18): 5183-5204.
|
[109] |
Keller K M, Lienert S, Bozbiyik A, et al. 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models[J]. Biogeosciences, 2017, 14(10): 1-48.
|