稳定碳同位素技术在生态系统研究中的应用

雷帅, 何春霞, 张劲松, 孟平, 孙守家

雷帅, 何春霞, 张劲松, 孟平, 孙守家. 稳定碳同位素技术在生态系统研究中的应用[J]. 同位素, 2020, 33(1): 53-66. DOI: 10.7538/tws.2018.youxian.092
引用本文: 雷帅, 何春霞, 张劲松, 孟平, 孙守家. 稳定碳同位素技术在生态系统研究中的应用[J]. 同位素, 2020, 33(1): 53-66. DOI: 10.7538/tws.2018.youxian.092
LEI Shuai, HE Chunxia, ZHANG Jinsong, MENG Ping, SUN Shoujia. A Review of the Application of Stable Carbon Isotopes to Ecosystem Research[J]. Journal of Isotopes, 2020, 33(1): 53-66. DOI: 10.7538/tws.2018.youxian.092
Citation: LEI Shuai, HE Chunxia, ZHANG Jinsong, MENG Ping, SUN Shoujia. A Review of the Application of Stable Carbon Isotopes to Ecosystem Research[J]. Journal of Isotopes, 2020, 33(1): 53-66. DOI: 10.7538/tws.2018.youxian.092

稳定碳同位素技术在生态系统研究中的应用

A Review of the Application of Stable Carbon Isotopes to Ecosystem Research

  • 摘要: 稳定碳同位素技术因具有示踪、整合和指示功能,检测快速、准确,在生态学、水文学和地球科学研究领域中得到了广泛应用。本文综述了稳定碳同位素技术在土壤碳循环、植物生理生态反应、树木对气候变化的响应、同位素模型等研究领域的新应用,发现在环境因子和基因型之间的交互作用对δ13C的影响、水分利用效率对多因素相互作用的响应、多同位素源分析模型不确定性等方面还有一些问题亟待解决,期望本文对稳定碳同位素在生态系统中应用现状、存在问题以及前景展望方面的总结对今后的相关研究有所裨益。
    Abstract: Stable carbon isotopes serve as tracers, integrators, and indicators for earth science. Moreover, rapid and accurate measurements of these isotopes are increasingly available. Studies of stable carbon isotopes demonstrate great potential to be more widely applied in the fields of ecology, hydrology and geoscience. Despite several previous reviews on the applications of various isotope systems, rapid development of new techniques and continuous expansion of these techniques to new applications in the field necessitate the publication of timely updates to summarize recent advances in applied stable carbon isotope research and technology. This paper summarizes new applications of stable carbon isotopes to investigate soil carbon cycles, plant physiology and ecology, and tree responses to climate change, and reviews recent progress in stable carbon isotope models. We also highlight areas for improving stable carbon isotope research, including consideration of the effects of interaction between environmental factors and plant genotypes on δ13C, the response of water use efficiency to multi-factor interactions and the uncertainty of multi-source isotopic models. We anticipate that this updated review of recent applications, existing problems and current prospects of stable carbon isotopes to ecosystem research will be beneficial for future research in this area.
  •   1966

  • [1] Soddy F. The radio-elements and the Periodic Law[J]. Nature, 1913, 91(2 264): 57-58.
    [2] Farmer J G, Baxter M S. Atmospheric carbon dioxide levels as indicated by the stable isotope record in wood[J]. Nature, 1974, 247(5 439): 273-275.
    [3] 林光辉. 稳定同位素生态学[M]. 北京:高等教育出版社,2013.
    [4] Ghashghaie J, Badeck F W. Opposite carbon isotope discrimination during dark respiration in leaves versus roots-a review[J]. New Phytologist, 2014, 201(3): 751-769.
    [5] Cernusak L A, Ubierna N, Winter K, et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants[J]. New Phytologist, 2013, 200(4): 950-965.
    [6] Brüggemann N, Gessler A, Kayler Z, et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review[J]. Biogeosciences, 2011, 8(11): 3457-3489.
    [7] Matteo G D, Nardi P, Fabbio G. On the use of stable carbon isotopes to detect the physiological impact of forest management: the case of mediterranean coppice woodland[J]. Forest Ecology & Management, 2017, 389: 158-166.
    [8] 张蕊,赵钰,何红波,等. 基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响[J]. 应用生态学报,2017,28(7):2379-2388. Zhang Rui, Zhao Yu, He Hongbo, et al. Investigation on effects of elevated atmospheric CO2 concentration on plant-soil system carbon cycling: Based on stable isotopic technique[J]. The journal of applied ecology, 2017, 28(7): 2379-2388(in Chinese).
    [9] 赵业思,王建,商志远. 树轮不同组分稳定碳同位素对气候变化响应敏感性:研究进展与评述[J]. 生态学杂志,2014,33(9):2538-2547.Zhao Yesi, Wang Jian, Shang Zhiyuan. Climate sensitivity differences of stable carbon isotope in different components of tree ring: Research progress and synthesis[J]. Chinese Journal of Ecology, 2014, 33(9): 2538-2547(in Chinese).
    [10] 沈芳芳,樊后保,吴建平,等. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报,2017,39(11):114-124.Shen Fangfang, Fan Houbao, Wu Jianping, et al. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114-124(in Chinese).
    [11] 刘贤赵,张勇,宿庆,等. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展,2014,29(12):1341-1354.Liu Xianzhao, Zhang Yong, Su Qin, et al. Research progress in responses of modern terrestrial plant carbon isotope composition to climate change[J]. Advances in Earth Science, 2014, 29(12): 1341-1354(in Chinese).
    [12] Mckinney C R, Mccrea J M, Epstein S, et al. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios[J]. Review of Scientific Instruments, 1950, 21(8): 724-730.
    [13] Farquhar G D, Cernusak L A. Ternary effects on the gas exchange of isotopologues of carbon dioxide[J]. Plant Cell & Environment, 2012, 35(7): 1221-1231.
    [14] Caemmerer S V, Evans J R. Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants[J]. Functional Plant Biology, 1991, 18(3): 287-305.
    [15] Hobbie E A, Werner R A. Intramolecular compound-specific and bulk carbon isotope patterns in C3, and C4, plants: a review and synthesis[J]. New Phytologist, 2004, 161(2): 371-385.
    [16] Gessler A, Tcherkez G, Peuke A D, et al. Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis[J]. Plant Cell & Environment, 2010, 31(7): 941-953.
    [17] Cernusak L A, Winter K, Aranda J, et al. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species[J]. Tree Physiology, 2009, 29(9): 1153-1161.
    [18] Tcherkez G, Farquhar G, Badeck F, et al. The oretical considerations about carbon isotope distribution in glucose of C3 plants[J]. Functional Plant Biology, 2004, 31(9): 857-877.
    [19] Henderson S A, Caemmerer S V, Farquhar G D. Short-term measurements of carbon isotope discrimination in several C4 species[J]. Aust J Plant Physiol, 1992, 9(3): 263-285.
    [20] Korol R L, Kirschbaum M U, Farquhar G D, et al. Effects of water status and soil fertility on the C-isotope signature in Pinus radiata[J]. Tree Physiology, 1999, 19(9): 551-562.
    [21] Gessler A, Schrempp S, Matzarakis A, et al. Radiation modifies the effect of water availability on the carbon isotope composition of beech (fagus sylvatica)[J]. New Phytologist, 2001, 150(3): 653-664.
    [22] Warren, Charles R. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer[J]. Journal of Experimental Botany,2007,59(7): 1475-1487.
    [23] Flexas J, Ribascarbó M, Diazespejo A, et al. Mesophyll conductance to CO2: current knowledge and future prospects[J]. Plant Cell & Environment, 2010, 31(5): 602-621.
    [24] Gessler A, Tcherkez G, Peuke A D, et al. Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis[J]. Plant Cell & Environment, 2010, 31(7): 941-953.
    [25] Farquhar G D. On the nature of carbon isotope discrimination in C4 species[J]. Functional Plant Biology, 1983, 10(2): 205-226.
    [26] Evans J R, Von C S. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco[J]. Plant Cell & Environment, 2013, 36(4): 745-756.
    [27] Henderson S A, Caemmerer S V, Farquhar G D. Short-term measurements of carbon isotope discrimination in several C4 pecies[J]. Aust J Plant Physiol, 1992, 9(3): 263-285.
    [28] Caemmerer S, Ghannoum O, Pengelly J J L, et al. Carbon isotope discrimination as a tool to explore C4 photosynthesis[J]. Journal of Experimental Botany, 2014, 65(13): 3459-3470.
    [29] Rossmann A, Butzenlechner M, Schmidt H L. Evidence for a nonstatistical carbon isotope distribution in natural glucose[J]. Plant Physiology, 1991, 96(2): 609-614.
    [30] Ahirwal J, Maiti S K, Singh A K. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India[J]. Science of the Total Environment, 2017, 583: 153-162.
    [31] Basher L, Betts H, Lynn I, et al. A preliminary assessment of the impact of landslide, earthflow, and gully erosion on soil carbon stocks in New Zealand[J]. Geomorphology, 2017, 307: 93-106.
    [32] Finzi A C, Abramoff R Z, Spiller K S, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 2015, 21(5): 2082-2094.
    [33] 吴健,沙晨燕,王敏,等. 典型滨岸草地生态系统碳稳定同位素组成及分布特征[J]. 应用生态学报,2017,28(7):2231-2238.Wu jian, Sha Chenyan, Wang Ming, et al. Composition and distribution characteristics of stable carbon isotope in typical riparian grassland ecosystem[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2231-2238(in Chinese).
    [34] An T, Schaeffer S, Li S, et al. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling[J]. Soil Biology & Biochemistry, 2015, 80(80): 53-61.
    [35] 顾鑫,安婷婷,李双异,等. δ13C法研究秸秆添加对棕壤团聚体有机碳的影响[J]. 水土保持学报,2014,28(2):243-247.Gu Xin, An Tingting, Li Shuangyi, et al. Effects of application of straw on organic carbon in brown soil aggregates by δ13C method[J]. Journal of Soil & Water Conservation, 2014, 28(2): 243-247(in Chinese).
    [36] Schlesinger W H. The formation of caliche in soils of the Mojave Desert, California[J]. Geochimica Et Cosmochimica Acta, 1985, 49(1): 57-66.
    [37] 李彦,王玉刚,唐立松. 重新被“激活”的土壤无机碳研究[J]. 土壤学报,2016,53(4):845-849.Li Yan, Wang Yugang, Tang Lisong. Study on soil inorganic carbon reactivated[J]. Journal of Soil Science, 2016, 53(4): 845-849(in Chinese).
    [38] Worrall F, Swank W T, Burt T. Fluxes of inorganic carbon from two forested catchments in the Appalachian Mountains[J]. Hydrological Processes, 2010, 19(15): 3021-3035.
    [39] Johnson M S, Lehmann J, Couto E G, et al. DOC and DIC in flow paths of Amazonian headwater catchments with hydrologically contrasting soils[J]. Biogeochemistry (Dordrecht), 2006, 81(1): 45-57.
    [40] 兰志龙,赵英,张建国,等. 陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征[J]. 环境科学,2018,39(1):339-347.Lan Zhilong, Zhao Yin, Zhang Jianguo,et al. Profile distribution of soil organic and inorganic carbon under different land use types in the Loess Plateau of Northern Shaanxi[J]. Environmental Science, 2018, 39(1): 339-347(in Chinese).
    [41] Liu J, Fa K, Zhang Y, et al. Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 2015, 42(14): 5779-5785.
    [42] Cook G D, Williams R J, Hutley L B, et al. Variation in vegetative water use in the savannas of the North Australian Tropical Transect[J]. Journal of Vegetation Science, 2002, 13(3): 413-418.
    [43] Easlon H M, Nemali K S, Richards J H, et al. The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana[J]. Photosynthesis Research, 2014, 119(1-2): 119-129.
    [44] Bai H, Purcell L C. Response of carbon isotope discrimination and oxygen isotope composition to mild drought in slow-and fast-wilting soybean genotypes[J]. Journal of Crop Improvement, 2018, 32(2): 239-253.
    [45] Song X, Loucos K E, Simonin K A, et al. Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton[J]. New Phytologist, 2015, 206(2): 637-646.
    [46] Song X, Barbour M M. Leaf water oxygen isotope measurement by direct equilibration[J]. New Phytologist, 2016, 211(3): 1120-1128.
    [47] Alonsocantabrana H, Caemmerer S V. Carbon isotope discrimination as a diagnostic tool for C4 photosynthesis in C3-C4 intermediate species[J]. Journal of Experimental Botany, 2016, 67(10): 3109-3121.
    [48] Castagneri D, Battipaglia G, Von G A, et al. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea[J]. Tree Physiology, 2018, 38(8): 1098-1109.
    [49] Young G, Loader N, Mccarroll D, et al. Oxygen stable isotope ratios from British oak tree-rings provide a strong and consistent record of past changes in summer rainfall[J]. Climate Dynamics, 2015, 45(11-12): 3609-3622.
    [50] Jaggi M, Saurer M, Fuhrer J, et al. The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies[J]. Oecologia, 2002, 131(3): 325-332.
    [51] Helle G, Schleser G H. Beyond CO2-fixation by Rubisco an interpretation of 13C/12C variations in tree rings from novel intraseasonal studies on broad-leaf trees[J]. Plant Cell and Environment, 2004, 27(3): 367-380.
    [52] Kimak A, Leuenberger M. Are carbohydrate storage strategies of trees traceable by early-latewood carbon isotope differences?[J]. Trees, 2015, 29(3): 859-870.
    [53] Battipaglia G, Saurer M, Cherubini P, et al. Elevated CO2, increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites[J]. New Phytologist, 2013, 197(2): 544-554.
    [54] Lévesque M, Siegwolf R, Saurer M, et al. Increased water use efficiency does not lead to enhanced tree growth under xeric and mesic conditions[J]. New Phytologist, 2014, 203(1): 94-109.
    [55] Martínez-Sancho E, Dorado-Liñán I, Gutiérrez-Merino E, et al. Increased water use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits[J]. Glob Chang Biol, 2017, 24(3): 1012-1028.
    [56] Pellizzari E, Camarero J J, Gazol A, et al. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback[J]. Glob Chang Biol, 2016, 22(6):2125-2137.
    [57] Sun S J, He C, Qiu L, et al. Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the Three-North Shelter Forest in Northern China[J]. Agricultural and Forest Meteorology, 2018, 252: 39-48.
    [58] Colangelo M, Camarero J J, Borghetti M, et al. Size matters a lot: drought-affected Italian oaks are smaller and show lower growth prior to tree death[J]. Frontiers in Plant Science, 2017, 8: 135.
    [59] 林鹏. 植物群落学[M]. 上海:上海科学技术出版社,1986.
    [60] Körner C, Leuzinger S, Riedl S, et al. Carbon and nitrogen stable isotope signals for an entire alpine flora, based on herbarium samples[J]. Alpine Botany, 2016, 126(2): 153-166.
    [61] Santiago L S, Silvera K, Andrade J L, et al. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition[J]. Environmental Research Letters, 2017, 12(11): 115 006.
    [62] Brooks J R, Flanagan L B, Buchmann N, et al. Carbon isotope composition of boreal plants: functional grouping of life forms[J]. Oecologia, 1997, 110(3): 301-311.
    [63] 赵丹,程军回,刘耘华,等.荒漠植物梭梭稳定碳同位素组成与环境因子的关系[J]. 生态学报,2017,37(8):2743-2752. Zhao Dan, Cheng Junhui, Liu Yunhua, et al. Relationship of stable carbon isotope composition with environmental factors in the desert plant Haloxylon ammodendron[J]. Acta Ecologica Sinica, 2017, 37(8): 2743-2752(in Chinese).
    [64] Garten C T, Taylor G E. Foliar δ13C within a temperate deciduous forest: spatial, temporal, and species sources of variation[J]. Oecologia, 1992, 90(1): 1-7.
    [65] Pan S, Zhang W, Zhao M, et al. Altitude patterns of leaf carbon isotope composition in a subtropical monsoon forest[J]. Polish Journal of Ecology, 2016, 64(2): 178-188.
    [66] He Z, Zhan S, Wang W, et al. Different patterns of changes in foliar carbon isotope composition along altitude[J]. Polish Journal of Ecology, 2017, 65(2): 227-235.
    [67] Gavazov K, Hagedorn F, Buttler A, et al. Environmental drivers of carbon and nitrogen isotopic signatures in peatland vascular plants along an altitude gradient[J]. Oecologia, 2016, 180(1): 257-264.
    [68] 任书杰, 于贵瑞. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J]. 植物生态学报,2011,35(2):119-124. Ren Shujie, Yu Guirui. Carbon isotope composition 478 of C3 plants and water use efficiency in China[J]. Chinese Journal of Plant Ecology, 2011, 35(2): 119-124(in Chinese).
    [69] 何春霞,李吉跃,孟平,等. 树木叶片稳定碳同位素分馏对环境梯度的响应[J]. 生态学报,2010,30(14):3 828.He Chunxia, Li Jiyue, Meng Ping, et al. Response of stable carbon isotope fractionation of tree leaves to environmental gradient[J]. Chinese Journal of Ecology, 2009, 30(14): 3 828.
    [70] Ma F, Liang W, Zhou Z, et al. Spatial variation in leaf stable carbon isotope composition of three Caragana Species in Northern China[J]. Forests, 2018, 9(6): 297.
    [71] Esmaeilpour A, Labeke M C V, Samson R, et al. Variation in biochemical characteristics, water status, stomata features, leaf carbon isotope composition and its relationship to water use efficiency in pistachio ( Pistacia vera, L.) cultivars under drought stress condition[J]. Scientia Horticulturae, 2016, 211: 158-166.
    [72] Flanagan L B, Brooks J R, Ehleringer J R. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: a comparison of functional characteristics in plants from three mature forest types[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D24): 28861-28869.
    [73] Buchmann N, Kaplan J O. Carbon isotope discrimination of terrestrial ecosystems—How well do observed and modeled results match?[J]. Global Biogeochemical Cycles in the Climate System, 2001, 20(1): 253-266.
    [74] Keenan T F, Hollinger D Y, Bohrer G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499(7 458): 324-327.
    [75] Treydte K S, Schleser G H, Helle G, et al. The twentieth century was the wettest period in northern Pakistan over the past millennium[J]. Nature, 2006, 440(7 088): 1179-1182.
    [76] Timofeeva G, Treydte K, Bugmann H, et al. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment[J]. Tree Physiology, 2017, 37(8): 1-14.
    [77] Pellizzari E, Camarero J J, Gazol A, et al. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback[J]. Glob Chang Biol, 2016, 22(6): 2125-2137.
    [78] 袁亚鹏, 赵阳, 赵传燕, 等. 黑河下游不同生境胡杨(Populus euphratica)叶片碳同位素组成特征[J]. 中国沙漠,2015,35(6):1505-1511.Yuan Yapeng, Zhao Yang, Zhao Chuanyan, et al. Characteristics of foliar stable carbon isotope composition of populus euphratica for different niche in the lower reach of the Heihe River[J].Journal of Desert Research,2015, 35(6): 1505-1511(in Chinese).
    [79] Dorman M, Perevolotsky A, Sarris D, et al. Amount vs temporal pattern: on the importance of intra-annual climatic conditions on tree growth in a dry environment[J]. Journal of Arid Environments, 2015, 118: 65-68.
    [80] Saurer M, Borella S, Schweingruber F, et al. Stable carbon isotopes in tree rings of beech: climatic versus site-related influences[J]. Trees, 1997, 11(5): 291-297.
    [81] Ratcliff C J, Voelker S L, Nolin A W. Tree-ring carbon isotope records from the western oregon cascade mountains primarily record summer maximum temperatures[J]. Tree-Ring Research, 2018, 74(2): 185-195.
    [82] Zhang X, Liu X, Zhang Q, et al. Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris, var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, Northeastern China[J]. Agricultural and Forest Meteorology, 2018, 248: 145-155.
    [83] Rezaie N, D′Andrea E, Bräuning A, et al. Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings[J]. Tree Physiology, 2018, 38(8): 1110-1126.
    [84] Girardin M P, Bouriaud O, Hogg E H, et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization[J]. Proceedings of the National Academy of Sciences, 2016, 113(52): E8406-E8414.
    [85] Gedalof Z, Berg A A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century[J]. Global Biogeochemical Cycles, 2010, 24(3): GB3 027.
    [86] Sleen P V D, Groenendijk P, Vlam M, et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased[J]. Nature Geoscience, 2014, 8(1): 24-28.
    [87] Dawson T E, Roden J S, Voelker S L, et al. Using redwood tree ring chronologies to obtain the long-view on california's coastal climate[C]. American Geophysical Union: Fall Meeting, 2014.
    [88] 路伟伟,余新晓,贾国栋,等. 密云山区油松树轮δ13C对气温和降水量变化的响应[J]. 林业科学,2018,54(3):1-7. Lu Weiwei, Yu Xinxiao, Jia Guodong, et al. Response of stable carbon Isotope of tree-ring to temperature and precipitation changes in pinus tabulaeformis in Miyun Mountain area[J]. Scientia Silvae Sinicae, 2018, 54(3): 1-7(in Chinese).
    [89] 张瑞波,尚华明,魏文寿,等. 树轮δ13C记录的阿勒泰地区近160年夏季气温变化[J]. 沙漠与绿洲气象,2014,8(2):34-40.Zhang Ruibo, Shang Huaming, Wei Wenshou, et al. Summer temperature changes in the Altay region of the Altay region recorded by the tree wheel δ13C in the past 160 years[J]. Desert and Oasis Meteorology, 2014, 8(2): 34-40 (in Chinese).
    [90] Voelker S L, Roden J S, Dawson E. Millennial-scale tree-ring isotope chronologies from coast redwoods provide insights on controls over California hydroclimate variability[J]. Oecologia, 2018, 187(4): 897-909.
    [91] 徐辉,李磊,李庆会,等. 大气CO2浓度与温度升高对茶树光合系统及品质成分的影响[J]. 南京农业大学学报,2016,39(4):550-556. Xu Hui, Li Lei, Li Qinghui, et al. Effects of elevated atmospheric CO2 concentration and temperature on photosynthesis system and quality components in tea plant[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 550-556(in Chinese).
    [92] Tei S, Yonenobu H, Sugimoto A, et al. Reconstructed summer palmer drought severity index since 1850 AD based on δ13C of larch tree rings in eastern Siberia[J]. Journal of Hydrology, 2015, 529: 442-448.
    [93] Payomrat P, Liu Y, Pumijumnong N, et al. Tree-ring stable carbon isotope-based June-September maximum temperature reconstruction since AD 1788, north-west Thailand[J]. Tellus B: Chemical and Physical Meteorology, 2018, 70(1): 1443 655.
    [94] Helama S, Arppe L, Timonen M, et al. A 7.5 ka chronology of stable carbon isotopes from tree rings with implications for their use in palaeo-cloud reconstruction[J]. Global and Planetary Change, 2018, 170: 20-33.
    [95] Szepanski M M, Bendavid M, Ballenberghe V V. Assessment of anadromous salmon resources in the diet of the Alexander Archipelago wolf using stable isotope analysis[J]. Oecologia, 1999, 120(3): 327-335.
    [96] York D. Least square fitting of straight line with correlated errors[J]. Earth & Planetary Science Letters, 1969, 5: 320-324.
    [97] Wehr R, Saleska S R. The long-solved problem of the best-fit straight line: application to isotopic mixing lines[J]. Biogeosciences, 2017, 14(1): 1-19.
    [98] Phillips D L, Koch P L. Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia, 2002, 133(1): 14-18.
    [99] Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480.
    [100] Gentsch L, Hammerle A, Sturm P, et al. Carbon isotope discrimination during branch photosynthesis of Fagus sylvatica: a Bayesian modelling approach[J]. Plant Cell & Environment, 2014, 37(7):1516-1535.
    [101] Evaristo J, Mcdonnell J J, Clemens J. Plant source water apportionment using stable isotopes: a comparison of simple linear, two compartment mixing model approaches[J]. Hydrological Processes, 2017, 31(21): 3750-3758. 
    [102] Riley W J, Still C J, Torn M S, et al. A mechanistic model of H182O and C18O2 fluxes between ecosystems and the atmosphere: model description and sensitivity analyses[J]. Global Biogeochemical Cycles, 2002, 16(4): 42-1-42-14.
    [103] Suits N S, Denning A S, Berry J A, et al. Simulation of carbon isotope discrimination of the terrestrial biosphere[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1 017.
    [104] Scholze M, Kaplan J O, Knorr W, et al. Climate and interannual variability of the atmosphere-biosphere 13CO2 flux[J]. Geophysical Research Letters, 2003, 30(2): 67-67.
    [105] Spahni R, Joos F, Stocker B D, et al. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century[J]. Climate of the Past, 2013, 9(3): 1287-1308.
    [106] Oleson K W, Lawrence D M, Bonan G B. Technical description of version 4.5 of the community land model (CLM) ncar tech note NCAR/TN-503+STR, national center for atmospheric research, boulder[J]. Geophysical Research Letters, 2013, 37(7): 256-265.
    [107] Mao J, Ricciuto D M, Thornton P E, et al. Evaluating the community land model in a pine stand with shading manipulations and 13CO2 labeling[J]. Biogeosciences, 2016, 13(3): 641-657.
    [108] Raczka B, Duarte H F, Koven C D, et al. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)[J]. Biogeosciences, 2016, 13(18): 5183-5204.
    [109] Keller K M, Lienert S, Bozbiyik A, et al. 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models[J]. Biogeosciences, 2017, 14(10): 1-48.
  • 期刊类型引用(7)

    1. 白雪娟,翟国庆,刘敬泽. ~(13)C稳定同位素在陆地生态系统植物-微生物-土壤碳循环中的应用. 林业科学. 2024(07): 175-190 . 百度学术
    2. 申雪,袁玉伟,聂晶,李春霖,邵圣枝,佘俊艳,武运,张永志. 浦江葡萄同位素与矿物元素特征及地理标志保护模型构建. 核农学报. 2022(01): 105-113 . 百度学术
    3. 史芮林,张庆芬,李铭,李全起,张明明. 植物碳同位素分馏在水分利用效率研究中的应用. 中国农学通报. 2022(23): 15-20 . 百度学术
    4. 连亚妮,杨可伟,牟洪香,李春友. 农田防护林系统植物水分利用效率研究. 林业与生态科学. 2021(03): 229-235 . 百度学术
    5. 毛佳琦,郑允允,张二强,王培,付玉洁,王瑶. 烟叶稳定碳同位素组成受控因素分析. 广东农业科学. 2021(07): 17-23 . 百度学术
    6. 何磊,陈欣,唐建军,胡亮亮,程磊. 生态系统氮素运转虚拟仿真实验的设计与开发. 实验技术与管理. 2020(12): 143-148 . 百度学术
    7. 刘飞,刘攀,曹铭,杨冲,陈婷婷,周华坤,王文颖. 稳定同位素技术在植物水分关系研究中的应用综述. 生态科学. 2020(06): 224-232 . 百度学术

    其他类型引用(21)

图(1)
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  31
  • PDF下载量:  559
  • 被引次数: 28
出版历程
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回