共振能量转移分子显像在生物医学中的应用

聂大红, 唐刚华

聂大红, 唐刚华. 共振能量转移分子显像在生物医学中的应用[J]. 同位素, 2016, 29(4): 248-256. DOI: 10.7538/tws.2016.29.04.0248
引用本文: 聂大红, 唐刚华. 共振能量转移分子显像在生物医学中的应用[J]. 同位素, 2016, 29(4): 248-256. DOI: 10.7538/tws.2016.29.04.0248
NIE Da-hong, TANG Gang-hua. Resonance Energy Transfer Molecular Imaging Application in Biomedicine[J]. Journal of Isotopes, 2016, 29(4): 248-256. DOI: 10.7538/tws.2016.29.04.0248
Citation: NIE Da-hong, TANG Gang-hua. Resonance Energy Transfer Molecular Imaging Application in Biomedicine[J]. Journal of Isotopes, 2016, 29(4): 248-256. DOI: 10.7538/tws.2016.29.04.0248

共振能量转移分子显像在生物医学中的应用

Resonance Energy Transfer Molecular Imaging Application in Biomedicine

  • 摘要: 共振能量转移分子显像(RETI)能显著改善光信号强度和组织穿透性,可用于活体深度组织光学显像。共振能量转移(RET)是指发生在近距离的供体与受体之间的能量转移,包括非放射共振能量转移和放射共振能量转移。RETI是基于共振能量转移的光学成像技术,主要包括荧光共振能量转移显像(FRETI)、生物发光共振能量转移显像(BRETI)、化学发光共振能量转移显像(CRETI)和放射共振能量转移显像(RRETI)。目前,RETI是分子显像研究的热门领域,已用于生物医药学研究各领域。本文对RETI技术原理及其在生物医学中的应用进行综述。
    Abstract: Resonance energy transfer molecular imaging (RETI) can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET) is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI), bioluminescence resonance energy transfer imaging (BRETI), chemiluminescence resonance energy transfer imaging (CRETI), and radiative resonance energy transfer imaging (RRETI). RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.
  • [1] Liu X, Qiu J. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications[J]. Chem Soc Rev, 2015, 44: 8714-8746.
    [2] So M K, Xu C, Loening A M, et al. Self-illuminating quantum dot conjugates for in vivo imaging[J]. Nat Biotech, 2006, 24(3): 339-343.
    [3] Zhang N, Francis K P, Prakash A, et al. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles[J]. Nat Med, 2013, 19(4): 500-505.
    [4] Li P, Liu L, Xiao H, et al. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice[J]. J Am Chem Soc, 2016, 138: 2893-2896.
    [5] Geiβler D, Hildebrandt N. Recent developments in forster resonance energy transfer (FRET) diagnostics using quantum dots[J]. Anal Bioanal Chem, 2016, 408(17): 4475-4483.
    [6] Chou K F, Dennis A M. Forster resonance energy transfer between quantum dot donors and quantum dot acceptors[J]. Sensors, 2015, 15: 13288-13325.
    [7] Shamirian A, Ghai A, Snee P T. QD-Based FRET Probes at a Glance[J]. Sensors, 2015, 15: 13028-13051.
    [8] Sun X, Huang X, Guo J, et al. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging[J]. J Am Chem Soc, 2014, 136: 1706-1709.
    [9] Hu H, Huang P, Weiss O J, et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters[J]. Biomaterials, 2014, 35: 9868-9876.
    [10] Dothager R S, Goiffon R J, Jackson E, et al. Cerenkov radiation energy transfer (CRET) imaging: A novel method for optical imaging of PET isotopes in biological systems[J]. PLoS ONE, 2010, 5(10): e13 300.
    [11] Axelsson J, Davis S C, Gladstone D J, et al. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence[J]. Med Phys, 2011, 38(7): 4127-4132.
    [12] Alvarez-Curto E, Pediani J D, Milligan G. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors[J]. Anal Bioanal Chem, 2010, 398: 167-180.
    [13] Liu X, Qiu J. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications[J]. Chem Soc Rev, 2015, 44: 8714-8746.
    [14] Peng H Q, Niu L Y, Chen Y Z, et al. Biological applications of supramolecular assemblies designed for excitation energy transfer[J]. Chem Rev, 2015, 115: 7502-7542.
    [15] 张顺超, 沈国励,李合松. 共振能量转移技术在生命科学中的应用研究新进展[J]. 分析科学学报,2015,31(4):560-566.Zhang Shunchao, Shen Guoli, Li Hesong. Recent advances of application and study on resonance energy transfer technology in life science[J]. J Analyt Sci, 2015, 31(4): 560-566(in Chinese).
    [16] Bouccara S, Sitbon G, Fragola A, et al. Enhancing fluorescence in vivo imaging using inorganic nanoprobes[J]. Curr Opinion Biotech, 2015, 34: 65-72.
    [17] Zou P, Chen H, Paholak H J,et al. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles[J]. Mol Pharmaceutics, 2013, 10: 4185-4194.
    [18] Zhang R, Yang J, Radford D C, et al. FRET Imaging of enzyme-responsive HPMA copolymer conjugate[J]. Macromol Biosci, 2016, DOI: 10.1002/mabi.201600125.
    [19] Bouchaala R, Mercier L, Andreiuk B, et al. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice[J]. J Control Release, 2016, 236: 57-67.
    [20] Li X, Deng D, Xue J,et al. Quantum dots based molecular beacons for in vitro and in vivo detection of MMP-2 on tumor[J]. Biosens Bioelectron, 2014, 61: 512-518.
    [21] Dragulescu-Andrasi A, Chana C T, Deb A, et al. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects[J]. PNAS, 2011, 108(29): 12060-12065.
    [22] De A, Ray P, Loening A M, et al. BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals[J]. FASEB J, 2009, 23: 2702-2709.
    [23] Kamkaew A, Sun H, England C G,et al. Quantum dot-NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo[J]. Chem Commun, 2016, 52: 6997-7000.
    [24] Hsu C, Chen C, Yu H, et al. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy[J]. Biomaterials, 2013, 34: 1204-1212.
    [25] Shuhendler A J, Pu K, Cui L, et al. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing[J]. Nat Biotech, 2014, 32(4): 373-380.
    [26] Zhen X, Zhang C, Xie C, et al. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species[J]. ACS Nano, 2016, 10: 6400-6409
    [27] Li P, Liu L, Xiao H, et al. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice[J]. J Am Chem Soc, 2016, 138: 2893-2896.
    [28] Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET)[J]. Angew Chem Int Ed, 2006, 45: 5140-5143.
    [29] Zhang N, Francis K P, Prakash A, et al. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles[J]. Nat Med, 2013, 19(4): 500-505.
    [30] Lee E S, Deepagan V G, You D G,et al. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer[J]. Chem Commun, 2016, 52: 4132-4135.
    [31] Naczynski D J, Sun C, Tuurkcan S, et al. X-ray induced shortwave infrared biomedical imaging using rare-earth nanoprobes[J]. Nano Lett, 2015, 15: 96-102.
    [32] Sun C, Pratx G, Carpenter C M, et al. Synthesis and radioluminescence of PEGylated Eu3+ doped nanophosphors as bioimaging probes[J]. Adv Mater, 2011, 23(24): 195-199.
    [33] Liu H, Zhang X, Xing B, et al. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging[J]. Small, 2010, 6(10): 1087-1091.
    [34] Zhan Y, Ai F, Chen F, et al. Intrinsically Zirconium-89 labeled Gd-2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray induced radioluminescence imaging[J].Small, 2016, 12(21): 2872-2876.
    [35] Hu Z, Qu Y, Wang K, et al. In vivo nanoparticle-mediated radiopharmaceutical excited fluorescence molecular imaging[J]. Nat Commun, 2015, 6: 7560.
    [36] Boschi F, Spinelli A E. Quantum dots excitation using pure beta minus radioisotopes emitting Cerenkov radiation[J]. RSC Adv, 2012, 2(2): 11 049-11 052.
    [37] Guo W, Sun X, Jacobson O, et al. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable cerenkov luminescence[J]. ASC Nano, 2015, 9(1): 488-495.
    [38] Li J, Dobrucki L W, Marjanovic M, et al. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres[J]. Phys Med Biol, 2015, 60: 727-739.
    [39] Zhou C, Hao G, Thomas P,et al. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics[J]. Angew Chem Int Ed, 2012, 51: 10118-10122.
    [40] Wang Y, Liu Y, Luehmann H, et al. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging[J]. Nano Lett, 2013, 13: 581-585.
    [41] Hu H, Huang P, Weiss O J, et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters[J]. Biomaterials, 2014, 35: 9868-9876.
    [42] Thorek D L J, Das S, Jan Grimm J. Molecular imaging using nanoparticle quenchers of cerenkov luminescence[J]. Small, 2014, 10(18): 3729-3734.
    [43] Phillips E, Penate-Medina O, Zanzonico P B, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe[J]. Sci Transl Med, 2014, 6(260): 1-9.
    [44] 聂大红,唐刚华. 肿瘤氨基酸代谢PET显像研究进展[J]. 同位素,2015,28(4):215-224.Nie Dahong, Tang Ganghua. Research progress of amino acid metabolism PET imaging in tumor[J]. J Isot, 2015, 28(4): 215-224(in Chinese).
    [45] Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents[J]. Chem Soc Rev, 2014, 43(20): 7132-7170.
计量
  • 文章访问数:  788
  • HTML全文浏览量:  1
  • PDF下载量:  1278
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-11-19

目录

    /

    返回文章
    返回