[1] |
Liu X, Qiu J. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications[J]. Chem Soc Rev, 2015, 44: 8714-8746.
|
[2] |
So M K, Xu C, Loening A M, et al. Self-illuminating quantum dot conjugates for in vivo imaging[J]. Nat Biotech, 2006, 24(3): 339-343.
|
[3] |
Zhang N, Francis K P, Prakash A, et al. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles[J]. Nat Med, 2013, 19(4): 500-505.
|
[4] |
Li P, Liu L, Xiao H, et al. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice[J]. J Am Chem Soc, 2016, 138: 2893-2896.
|
[5] |
Geiβler D, Hildebrandt N. Recent developments in forster resonance energy transfer (FRET) diagnostics using quantum dots[J]. Anal Bioanal Chem, 2016, 408(17): 4475-4483.
|
[6] |
Chou K F, Dennis A M. Forster resonance energy transfer between quantum dot donors and quantum dot acceptors[J]. Sensors, 2015, 15: 13288-13325.
|
[7] |
Shamirian A, Ghai A, Snee P T. QD-Based FRET Probes at a Glance[J]. Sensors, 2015, 15: 13028-13051.
|
[8] |
Sun X, Huang X, Guo J, et al. Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging[J]. J Am Chem Soc, 2014, 136: 1706-1709.
|
[9] |
Hu H, Huang P, Weiss O J, et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters[J]. Biomaterials, 2014, 35: 9868-9876.
|
[10] |
Dothager R S, Goiffon R J, Jackson E, et al. Cerenkov radiation energy transfer (CRET) imaging: A novel method for optical imaging of PET isotopes in biological systems[J]. PLoS ONE, 2010, 5(10): e13 300.
|
[11] |
Axelsson J, Davis S C, Gladstone D J, et al. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence[J]. Med Phys, 2011, 38(7): 4127-4132.
|
[12] |
Alvarez-Curto E, Pediani J D, Milligan G. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors[J]. Anal Bioanal Chem, 2010, 398: 167-180.
|
[13] |
Liu X, Qiu J. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications[J]. Chem Soc Rev, 2015, 44: 8714-8746.
|
[14] |
Peng H Q, Niu L Y, Chen Y Z, et al. Biological applications of supramolecular assemblies designed for excitation energy transfer[J]. Chem Rev, 2015, 115: 7502-7542.
|
[15] |
张顺超, 沈国励,李合松. 共振能量转移技术在生命科学中的应用研究新进展[J]. 分析科学学报,2015,31(4):560-566.Zhang Shunchao, Shen Guoli, Li Hesong. Recent advances of application and study on resonance energy transfer technology in life science[J]. J Analyt Sci, 2015, 31(4): 560-566(in Chinese).
|
[16] |
Bouccara S, Sitbon G, Fragola A, et al. Enhancing fluorescence in vivo imaging using inorganic nanoprobes[J]. Curr Opinion Biotech, 2015, 34: 65-72.
|
[17] |
Zou P, Chen H, Paholak H J,et al. Noninvasive fluorescence resonance energy transfer imaging of in vivo premature drug release from polymeric nanoparticles[J]. Mol Pharmaceutics, 2013, 10: 4185-4194.
|
[18] |
Zhang R, Yang J, Radford D C, et al. FRET Imaging of enzyme-responsive HPMA copolymer conjugate[J]. Macromol Biosci, 2016, DOI: 10.1002/mabi.201600125.
|
[19] |
Bouchaala R, Mercier L, Andreiuk B, et al. Integrity of lipid nanocarriers in bloodstream and tumor quantified by near-infrared ratiometric FRET imaging in living mice[J]. J Control Release, 2016, 236: 57-67.
|
[20] |
Li X, Deng D, Xue J,et al. Quantum dots based molecular beacons for in vitro and in vivo detection of MMP-2 on tumor[J]. Biosens Bioelectron, 2014, 61: 512-518.
|
[21] |
Dragulescu-Andrasi A, Chana C T, Deb A, et al. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects[J]. PNAS, 2011, 108(29): 12060-12065.
|
[22] |
De A, Ray P, Loening A M, et al. BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals[J]. FASEB J, 2009, 23: 2702-2709.
|
[23] |
Kamkaew A, Sun H, England C G,et al. Quantum dot-NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo[J]. Chem Commun, 2016, 52: 6997-7000.
|
[24] |
Hsu C, Chen C, Yu H, et al. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy[J]. Biomaterials, 2013, 34: 1204-1212.
|
[25] |
Shuhendler A J, Pu K, Cui L, et al. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing[J]. Nat Biotech, 2014, 32(4): 373-380.
|
[26] |
Zhen X, Zhang C, Xie C, et al. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species[J]. ACS Nano, 2016, 10: 6400-6409
|
[27] |
Li P, Liu L, Xiao H, et al. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice[J]. J Am Chem Soc, 2016, 138: 2893-2896.
|
[28] |
Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET)[J]. Angew Chem Int Ed, 2006, 45: 5140-5143.
|
[29] |
Zhang N, Francis K P, Prakash A, et al. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles[J]. Nat Med, 2013, 19(4): 500-505.
|
[30] |
Lee E S, Deepagan V G, You D G,et al. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer[J]. Chem Commun, 2016, 52: 4132-4135.
|
[31] |
Naczynski D J, Sun C, Tuurkcan S, et al. X-ray induced shortwave infrared biomedical imaging using rare-earth nanoprobes[J]. Nano Lett, 2015, 15: 96-102.
|
[32] |
Sun C, Pratx G, Carpenter C M, et al. Synthesis and radioluminescence of PEGylated Eu3+ doped nanophosphors as bioimaging probes[J]. Adv Mater, 2011, 23(24): 195-199.
|
[33] |
Liu H, Zhang X, Xing B, et al. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging[J]. Small, 2010, 6(10): 1087-1091.
|
[34] |
Zhan Y, Ai F, Chen F, et al. Intrinsically Zirconium-89 labeled Gd-2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray induced radioluminescence imaging[J].Small, 2016, 12(21): 2872-2876.
|
[35] |
Hu Z, Qu Y, Wang K, et al. In vivo nanoparticle-mediated radiopharmaceutical excited fluorescence molecular imaging[J]. Nat Commun, 2015, 6: 7560.
|
[36] |
Boschi F, Spinelli A E. Quantum dots excitation using pure beta minus radioisotopes emitting Cerenkov radiation[J]. RSC Adv, 2012, 2(2): 11 049-11 052.
|
[37] |
Guo W, Sun X, Jacobson O, et al. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable cerenkov luminescence[J]. ASC Nano, 2015, 9(1): 488-495.
|
[38] |
Li J, Dobrucki L W, Marjanovic M, et al. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres[J]. Phys Med Biol, 2015, 60: 727-739.
|
[39] |
Zhou C, Hao G, Thomas P,et al. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics[J]. Angew Chem Int Ed, 2012, 51: 10118-10122.
|
[40] |
Wang Y, Liu Y, Luehmann H, et al. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging[J]. Nano Lett, 2013, 13: 581-585.
|
[41] |
Hu H, Huang P, Weiss O J, et al. PET and NIR optical imaging using self-illuminating 64Cu-doped chelator-free gold nanoclusters[J]. Biomaterials, 2014, 35: 9868-9876.
|
[42] |
Thorek D L J, Das S, Jan Grimm J. Molecular imaging using nanoparticle quenchers of cerenkov luminescence[J]. Small, 2014, 10(18): 3729-3734.
|
[43] |
Phillips E, Penate-Medina O, Zanzonico P B, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe[J]. Sci Transl Med, 2014, 6(260): 1-9.
|
[44] |
聂大红,唐刚华. 肿瘤氨基酸代谢PET显像研究进展[J]. 同位素,2015,28(4):215-224.Nie Dahong, Tang Ganghua. Research progress of amino acid metabolism PET imaging in tumor[J]. J Isot, 2015, 28(4): 215-224(in Chinese).
|
[45] |
Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents[J]. Chem Soc Rev, 2014, 43(20): 7132-7170.
|