稳定同位素13C分离用高效丝网波纹填料表面降膜流动研究

田叶盛, 李虎林, 姜永悦, 龙磊, 吉永喆, 蔡扬

田叶盛, 李虎林, 姜永悦, 龙磊, 吉永喆, 蔡扬. 稳定同位素13C分离用高效丝网波纹填料表面降膜流动研究[J]. 同位素, 2016, 29(2): 108-115. DOI: 10.7538/tws.2016.29.02.0108
引用本文: 田叶盛, 李虎林, 姜永悦, 龙磊, 吉永喆, 蔡扬. 稳定同位素13C分离用高效丝网波纹填料表面降膜流动研究[J]. 同位素, 2016, 29(2): 108-115. DOI: 10.7538/tws.2016.29.02.0108
TIAN Ye-sheng, LI Hu-lin, JIANG Yong-yue, LONG Lei, JI Yong-zhe, CAI Yang. Local Falling Film Flow Study of Mesh Corrugated Packing Used in the Separation of Stable Isotope 13C[J]. Journal of Isotopes, 2016, 29(2): 108-115. DOI: 10.7538/tws.2016.29.02.0108
Citation: TIAN Ye-sheng, LI Hu-lin, JIANG Yong-yue, LONG Lei, JI Yong-zhe, CAI Yang. Local Falling Film Flow Study of Mesh Corrugated Packing Used in the Separation of Stable Isotope 13C[J]. Journal of Isotopes, 2016, 29(2): 108-115. DOI: 10.7538/tws.2016.29.02.0108

稳定同位素13C分离用高效丝网波纹填料表面降膜流动研究

Local Falling Film Flow Study of Mesh Corrugated Packing Used in the Separation of Stable Isotope 13C

  • 摘要: 由于碳同位素分离系数小,分离难度大,需要采用高效规整填料实现13C的分离。本文通过计算流体力学(CFD)数值模拟研究,采用流体体积函数(VOF)方法,研制了用于13C分离的高比表面积丝网波纹规整填料(PACK-13C),建立了PACK-13C填料表面伴随有气相逆流的局部液体降膜流动模型,选用CO(l)-CO(g)为模拟计算物系,考察了板面结构、丝网目数等因素对液膜流动的影响,并对填料表面气液相界面进行追踪,探究了气液相界面波动对传质效率的影响,研究表明,改善填料壁面结构能够增强气液相界面波动,可以实现强化传质过程。填料表面局部降膜流动的研究方法,可应用于填料气液传质过程中涉及的多尺度流动及传质现象的可视化研究,为优化填料结构提供基础性理论指导。
    Abstract: The separation coefficient of carbon isotopes is small, high-efficiency structured packing should be used in the separation of 13C. So the self-developed high-efficiency structured packing PACK-13C was put forward. By means of computational fluid dynamics (CFD), a local falling film flow of mesh corrugated packing PACK-13C with the gas phase counter-current model using the volume of fluid (VOF) was presented. CO(l)-CO(g) was selected to be the simulation mixtures. Based on the simulated results, the influences of the plate structures and the mesh sizes on the film flow were investigated. Based on the gas-liquid interface tracking timely, the influence of interface fluctuation on the mass transfer efficiency was also investigated. The results showed that improving the wall structures to enhance the interface fluctuation was the effective way to strengthen the mass-transfer efficiency. The method of local falling film flow study could be applied to research the multi-scale flow and mass-transfer behavior of the packing which provide some theoretical guidance about the optimization of the packing’s structures.
  • [1] 李虎林,李良君. 低温精馏分离稳定同位素碳-13——回顾与展望[J]. 低温与特气,2008,26(6):9-15.
    [2] 徐大刚,钟授富. 稳定同位素的分离与应用[J]. 化工进展,1997,2:41-50.
    [3] Li H L, Ju Y L, Li L J, et al. Separation of isotope 13C using high-performance structured packing[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49, 255-261.
    [4] 田叶盛,李虎林,许保云,等. 稳定同位素13C分离级联装置的模拟优化研究[J]. 同位素,2012,25(4):129-134.
    [5] Mahr B, Mewes D. Two-phase flow in structured packings: modeling and calculation on a macroscopic scale[J]. AICHE J, 2008, 54(3): 614-626.
    [6] Van Baten J M, Krishna R. Gas and liquid phase mass transfer within KATAPAK-S structures studied using CFD simulations[J]. Chemical Engineering Science, 2002, 57: 1531-1536.
    [7] 谷芳. 规整填料局部流动与传质的计算流体力学研究[D]. 天津:天津大学,2004.
    [8] Yu L M, Zeng A W, Yu K T. Effect of interfacial velocity fluctuations on the enhancement of the mass-transfer process in falling film flow[J]. Ind Eng Res, 2006, 45(3): 1201-1210.
    [9] Hodson J S, Fletcher J R, Porter K E. Fluid mechanical studies of structured distillation packings[J]. I Chem E Symp Ser Dist And Absp, 1997, 2(142): 999-1007.
    [10] Petre C F, Larachi F, Iliuta I. Pressure drop through structured packings: Break down into the contributing mechanisms by CFD modeling[J]. Chem Eng Sci, 2003, 58: 163-177.
    [11] Mahr B, Mewes D. Two-phase flow in structured packings: modeling and calculation on a macroscopic scale[J]. AICHE J, 2008, 54(3): 614-626.
    [12] Hodson J S, Fletcher J R, Porter K E. Fluid mechanical studies of structured distillation packings[J]. I Chem E Symp Ser Dist And Absp, 1997, 2(142): 999-1007.
    [13] 刘儒勋,王志峰. 数值模拟方法和运动界面追踪(第一版)[M]. 合肥:中国科学技术大学出版社,2001.
    [14] Brackbill J U, Kothe D B, Zem A C. A continuum method for modeling surface tension[J]. J Comput Phys, 1992, 100: 335-354.
    [15] Choudhury D. Introduction to the renormalization group method and turbulence-modeling[M]∥[S.I.]: Fluent Inc. Technical Memorandum TM-107. 1993.
    [16] Sarkar S, Lakshmanan B. Application of a Reynolds stress turbulence model to the compressible shear layer[J]. Aiaa Journal, 1990, 29(5): 743-749.
    [17] Woerlee G E, Berends J, Oldie Z, et al. A comprehensive model for the pressure drop in vertical pipes and packed columns[J]. Chem Eng J, 2001, 84: 367-379.
    [18] 王瑞金,张凯,王刚. FLUENT技术基础与应用实例[M]. 北京:清华大学出版社,2006.
计量
  • 文章访问数:  694
  • HTML全文浏览量:  0
  • PDF下载量:  828
  • 被引次数: 0
出版历程
  • 刊出日期:  2016-05-19

目录

    /

    返回文章
    返回