12C18O和13C16O分子X1Σ+基态的完全振动能谱和同位素位移

刘杰超, 马永健, 窦亮

刘杰超, 马永健, 窦亮. 12C18O和13C16O分子X1Σ+基态的完全振动能谱和同位素位移[J]. 同位素, 2011, 24(1): 24-28. DOI: 10.7538/tws.2011.24.01.0024
引用本文: 刘杰超, 马永健, 窦亮. 12C18O和13C16O分子X1Σ+基态的完全振动能谱和同位素位移[J]. 同位素, 2011, 24(1): 24-28. DOI: 10.7538/tws.2011.24.01.0024
LIU Jie-chao, MA Yong-jian, DOU Liang. Studies on the Fully Vibrational Spectra and the Isotope Effect of 12C18O and 13C16O in Ground State[J]. Journal of Isotopes, 2011, 24(1): 24-28. DOI: 10.7538/tws.2011.24.01.0024
Citation: LIU Jie-chao, MA Yong-jian, DOU Liang. Studies on the Fully Vibrational Spectra and the Isotope Effect of 12C18O and 13C16O in Ground State[J]. Journal of Isotopes, 2011, 24(1): 24-28. DOI: 10.7538/tws.2011.24.01.0024

12C18O和13C16O分子X1Σ+基态的完全振动能谱和同位素位移

Studies on the Fully Vibrational Spectra and the Isotope Effect of 12C18O and 13C16O in Ground State

  • 摘要: 采用双原子分子及离子体系的完全振动能谱和精确振动光谱常数的代数方法(Algebraic Method),根据实验所得的一组精确的12C16O分子X1Σ+基态低振动能级计算出其精确振动光谱常数和完全振动能谱;并结合Herzberg的同位素效应理论得出实验上缺乏的12C18O和13C16O分子X1Σ+基态的各项光谱常数,计算出它们之间的同位素位移。
    Abstract: With the algebraic method of studying the full vibrational energy and precise vibrational spectrum constants in diatomic molecules and ions systems, a series of precise vibrational spectrum constants and full vibrational energy spectrum were generated based on a number of experimentallymeasured lower vibrational energy levels of 12C16O. The ground states spectrum constants of 12C18O and 13C16O and the isotope shift of them have also been obtained by combining algebraic method with the Herzberg’s isotope effect theory, which may be important and useful for the experiment measurements.
  • [1] Furne JK,Springfield JR,Ho SB, et al. Simplification of the end-alveolar carbon monoxide technique to assess erythrocyte survival[J]. J Lab Clin Med, 2003, 142: 1.
    [2] Telle H, Telle U. A simple numerical treatment of the RKR potential integrals and its application to 12C16O (X1Σ+)[J]. J Mol Spectrosc, 1981, 85: 248.
    [3] 徐光宪,黎乐民.量子化学基本原理和从头计算法[M]. 北京:科学出版社,1985.
    [4] 徐克尊.高等原子分子物理学[M]. 北京:科学出版社,2000.
    [5] 徐亦庄.分子光谱理论[M]. 北京:清华大学出版社,1988.
    [6] Mchale JL. Molecular Spectroscopy[M]. New Jersey: Prentice-Hall, 1999.
    [7] Herzberg G. Molecular spectra and molecular structure I:Spectra of diatomic molecules[M].New York: Van Nostrand Company,Inc,1950.
    [8] 周公度,段连运. 结构化学基础[M]. 北京:北京大学出版社,2008.
    [9] Huxley P, Murrell JN. Ground-state diatomic potentials [J]. J Chem Soc Faraday Trans:II. 1983, 79:323-328.
    [10] 朱正和,俞华根.分子结构与分子势能函数[M].北京:科学出版社,1997.
    [11] Murrell JN, Sorbie KS. New analytic form for the potential energy curves of stable diatomic states[J].J Chem Soc Faraday Trans:II,1973, 7:1 552-1 557.
    [12] Huxley P, Knowels DB, Murrell JN, et al. Ground-state diatomic potentials. Part 2:Van der Waals molecules[J].J Chem Soc Faraday Trans II, 1984, 80:1 349-1 361.
    [13] Sun Weiguo, Hou Shilin. Studies on the Vibrational and Rovibrational Energies and Vibrational Force Constants of Diatomic Molecular States Using Algebraic and Variational Methods[J]. J Mol Spectrosc,2002,215:93-105.
    [14] 孙卫国, 侯世林.双原子分子体系的振动结构研究[J]. 原子核物理评论, 2002, 19(2): 91-94.
    [15] Huber KP, Herzberg G. Molecular Spectra and Molecular Structure (IV), Constants of Diatomic Molecules[M]. New York:Van Nostrand, 1979.
    [16] 朱正和.原子分子反应静力学[M].北京:科学出版社,1996.
计量
  • 文章访问数:  542
  • HTML全文浏览量:  0
  • PDF下载量:  1024
  • 被引次数: 0
出版历程
  • 收稿日期:  1899-12-31
  • 修回日期:  1899-12-31
  • 刊出日期:  2011-02-19

目录

    /

    返回文章
    返回